RNA design in theory and practice

Sven Findeiß
sven@bioinf.uni-leipzig.de

Bioinformatics Group and Interdisciplinary Center for Bioinformatics, Department of Computer Science,

University Leipzig

AlgoSB 2019

January, 2019

Sequence-Structure-Function Relation

Basic paradigm of RNA structure biology: Structure of an RNA sequence typically determines the function.

Sequence-Structure-Function Relation

Basic paradigm of RNA structure biology: Structure of an RNA sequence typically determines the function.

Sequence \Rightarrow Structure \Rightarrow Function

Structure-Puzzle

See a structure...

Donath, Alexander, et al., 2010, Noncoding RNA, 251-293, in Evolutionary Genomics and Systems Biology, edited by Caetano-Anolles, Wiley-Blackwell

Structure-Puzzle

See a structure...

... guess the function !!!

Donath, Alexander, et al., 2010, Noncoding RNA, 251-293, in Evolutionary Genomics and Systems Biology, edited by Caetano-Anolles, Wiley-Blackwell

Structure-Puzzle

See a structure...

... guess the function !!!

Donath, Alexander, et al., 2010, Noncoding RNA, 251-293, in Evolutionary Genomics and Systems Biology, edited by Caetano-Anolles, Wiley-Blackwell

Structure-Puzzle

See a structure...

... guess the function !!!

Donath, Alexander, et al., 2010, Noncoding RNA, 251-293, in Evolutionary Genomics and Systems Biology, edited by Caetano-Anolles, Wiley-Blackwell

Structure-Puzzle

See a structure...

... guess the function !!!

Donath, Alexander, et al., 2010, Noncoding RNA, 251-293, in Evolutionary Genomics and Systems Biology, edited by Caetano-Anolles, Wiley-Blackwell

Sequence-Structure-Function Relation

Basic paradigm of RNA structure biology: Structure of an RNA sequence typically determines the function.

Sequence \Rightarrow Structure \Rightarrow Function

Sequence-Structure-Function Relation

Basic paradigm of RNA structure biology: Structure of an RNA sequence typically determines the function.

Sequence \Leftarrow Structure \Leftarrow Function
 RNA design aims on the reverse

RNA design aims on the reverse

Sequence \Leftarrow Structure \Leftarrow Function

(1) Which sequence optimally folds into given target structure(s)?
(2) How to implement novel functions?

RNA design aims on the reverse

Sequence \Leftarrow Structure \Leftarrow Function

(1) Which sequence optimally folds into given target structure(s)?
(3) How to implement novel functions?

RNA design aims on the reverse

Sequence \Leftarrow Structure \Leftarrow Function

(1) Which sequence optimally folds into given target structure(s)?
(3) How to implement novel functions?

Complexity of Sequence Design I

- Nucleic acid sequence sampling: four possible assignments on each position.
NNNNNNNNNNNN $=4^{12}=16,777,216$ possible sequences
$N=\{A, C, G, U\}$

Complexity of Sequence Design I

- Nucleic acid sequence sampling: four possible assignments on each position.
NNNNNNNNNNNN $=4^{12}=16,777,216$ possible sequences
$N=\{A, C, G, U\}$
- Sequence constraints: restriction of individual positions to a subset of possible assignments
NGNNNNVNNNNN $=1 \times 3 \times 4^{10}=3,145,728$ possible sequences
$\mathrm{V}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}\}$

Complexity of Sequence Design I

- Nucleic acid sequence sampling: four possible assignments on each position.
NNNNNNNNNNNN $=4^{12}=16,777,216$ possible sequences
$N=\{A, C, G, U\}$
- Sequence constraints: restriction of individual positions to a subset of possible assignments
NGNNNNVNNNNN $=1 \times 3 \times 4^{10}=3,145,728$ possible sequences $V=\{A, C, G\}$
- RNA forms base pairs: restriction to six possible assignments for paired positions
$((((\ldots)))) .=4^{4} \times 6^{4}=331,776$ possible sequences
() $=\{A U, U A, C G, G C, U G, G U\} .=N=\{A, G, C, U\}$

Complexity of Sequence Design I

- Nucleic acid sequence sampling: four possible assignments on each position.
NnNNNNNNNNNN $=4^{12}=16,777,216$ possible sequences
$N=\{A, C, G, U\}$
- Sequence constraints: restriction of individual positions to a subset of possible assignments
NGNNNNVNNNNN $=1 \times 3 \times 4^{10}=3,145,728$ possible sequences $V=\{A, C, G\}$
- RNA forms base pairs: restriction to six possible assignments for paired positions
$((((\ldots)))) .=4^{4} \times 6^{4}=331,776$ possible sequences
() $=\{A U, U A, C G, G C, U G, G U\} .=N=\{A, G, C, U\}$
- Combination of sequence and structure constraint: ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences

Sequence Selection

$$
\begin{aligned}
& (((\text { (. . .))))). } \\
& \text { NGNNNVNNNNN }
\end{aligned}
$$

Sequence Selection

$$
\begin{aligned}
& (((\text { (. . .))))). } \\
& \text { NGNNNVNNNNN }
\end{aligned}
$$

- 82, 944 compatible sequences

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

$$
((((\ldots)))) .
$$

Calculate the energy of the target structure for each sequence.

NGNNNNVNNNNN

- 82,944 compatible sequences

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

Calculate the energy of the target structure for each sequence.

$$
((((\ldots)))) .
$$

NGNNNNVNNNNN

- 82, 944 compatible sequences

Sequence Selection

$$
((((\ldots)))) .
$$

NGNNNNVNNNNN

- 82, 944 compatible sequences

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

$$
\begin{aligned}
& ((((\ldots)))) \\
& \text { NGNNNNVNNNNN } \\
& \text { - 82, } 944 \text { compatible sequences } \\
& \text { - favor low EOS }
\end{aligned}
$$

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))) .
 NGNNNNVNNNNN
 - 82,944 compatible sequences
 - favor low EOS

Does the target structure correspond to the actual minimum free energy conformation?

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```


Sequence Selection

((((...)))).
 NGNNNNVNNNNN
 - 82, 944 compatible sequences
 - favor low EOS

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))).

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
stable conformation
structure ensemble mic ht be diverse

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))).

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
structure ensemble might be diverse

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))).

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((. .)))) .

NGNNNNVNNNNN

Does the target conformation dominate the ensemble?

$$
E F E=-R T \ln \underbrace{\sum_{P} \exp \left(-\frac{E(P)}{R T}\right)}_{\text {partition function } \mathrm{Z}}
$$

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```


Sequence Selection

((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

Combine EFE and EOS to calculate the probability of the target structure in the ensemble.

$$
p(P)=\exp \left(-\frac{E O S-E F E}{R T}\right)
$$

((((...)))).

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low $E O S=E F E$

Sequence Selection

Combine EFE and EOS to calculate the probability of the target structure in the ensemble.

$$
p(P)=\exp \left(-\frac{E O S-E F E}{R T}\right)
$$

$$
\exp \left(-\frac{-5.30-(-5.81)}{R T}\right)=0.44
$$

Sequence Selection

Combine EFE and EOS to calculate the probability of the target structure in the ensemble.

$$
p(P)=\exp \left(-\frac{E O S-E F E}{R T}\right)
$$

$$
\exp \left(-\frac{-4.30-(-5.81)}{R T}\right)=0.09
$$

((((...)))).

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE

PDE takes only the exact target state into account

Sequence Selection

Combine EFE and EOS to calculate the probability of the target structure in the ensemble.

$$
p(P)=\exp \left(-\frac{E O S-E F E}{R T}\right)
$$

The probability defect estimates the offset

$$
P D E=1-p(P)
$$

((((...)))).

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE

PDE takes only the exact target state into account

Sequence Selection

Combine EFE and EOS to calculate the probability of the target structure in the ensemble.

$$
p(P)=\exp \left(-\frac{E O S-E F E}{R T}\right)
$$

The probability defect estimates the offset

$$
P D E=1-p(P)
$$

((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account

Sequence Selection

[^0]
((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account

Sequence Selection

Ensemble defect ensures that structures similar to the target conformation are favored, while distant or contrary structures are prohibited.

((((...)))) .

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account

Sequence Selection

((((...)))) .

NGNNNNVNNNNN

Ensemble defect ensures that structures similar to the target conformation are favored, while distant or contrary structures are prohibited.

$$
E D E=\sum_{P} p(P) \underbrace{d_{B P}(P, T)}_{\left|B P_{P}\right|+\left|B P_{T}\right|-2\left|B P_{P} \cap B P_{T}\right|}
$$

- 82,944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account

```
EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect
```

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((...)))).

NGNNNNVNNNNN

Ensemble defect ensures that structures similar to the target conformation are favored, while distant or contrary structures are prohibited.

$$
E D E=\sum_{P} p(P) \underbrace{d_{B P}(P, T)}_{\left|B P_{P}\right|+\left|B P_{T}\right|-2\left|B P_{P} \cap B P_{T}\right|}
$$

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account
- EDE also counts similar structures

Sequence Selection

((((...)))).

$$
\begin{aligned}
& \text { EOS }:=\text { Energy Of Structure } \\
& \text { MFE }:=\text { Minimum Free Energy } \\
& \text { EFE }:=\text { Ensemble Free Energy } \\
& \text { PDE }:=\text { Probability Defect } \\
& \text { EDE }:=\text { Ensemble Defect }
\end{aligned}
$$

NGNNNNVNNNNN

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account
- EDE also counts similar structures

Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

Sequence Selection

((((. .)))) .

NGNNNNVNNNNN

Two conditions must be fulfilled

the target structure must be thermodynamically stable contrary structures should be less stable and thus less probable in the ensemble

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect
EDE := Ensemble Defect

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low $\mathrm{EOS}=\mathrm{EFE}$
- PDE takes only the exact target state into account
- EDE also counts similar structures

Sequence Selection

((((...)))) .

NGNNNNVNNNNN

Two conditions must be fulfilled

(1) the target structure must be thermodynamically stable \rightarrow positive design
contrary structures should
be less stable and thus less
probable in the ensemble

$$
\begin{aligned}
& \text { EOS }:=\text { Energy Of Structure } \\
& \text { MFE }:=\text { Minimum Free Energy } \\
& \text { EFE }:=\text { Ensemble Free Energy } \\
& \text { PDE }:=\text { Probability Defect } \\
& \text { EDE }:=\text { Ensemble Defect }
\end{aligned}
$$

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account
- EDE also counts similar structures

Sequence Selection

$$
((((\ldots)))) .
$$

NGNNNNVNNNNN

Two conditions must be fulfilled
(1) the target structure must be thermodynamically stable \rightarrow positive design
(2) contrary structures should be less stable and thus less probable in the ensemble \rightarrow negative design

$$
\begin{aligned}
& \text { EOS }:=\text { Energy Of Structure } \\
& \text { MFE }:=\text { Minimum Free Energy } \\
& \text { EFE }:=\text { Ensemble Free Energy } \\
& \text { PDE }:=\text { Probability Defect } \\
& \text { EDE }:=\text { Ensemble Defect }
\end{aligned}
$$

- 82, 944 compatible sequences
- favor low EOS
- favor low EOS = MFE
- MFE state rarely the only stable conformation
- structure ensemble might be diverse
- favor low EOS = EFE
- PDE takes only the exact target state into account
- EDE also counts similar structures

Sequence Selection

- 1994 RNAinverse
- 2004 RNA-SSD
- 2006 INFO-RNA
- 2011 RNAexinv
- 2011 NUPACK:Design*
- 2012 RNA-ensign
- 2012 DSS-Opt
- 2013 RNAiFold*
- 2013 IncaRNAtion
- 2014 ERD
- 2014 EteRNA(Bot)*

EOS := Energy Of Structure
MFE := Minimum Free Energy
EFE := Ensemble Free Energy
PDE := Probability Defect

- 2015 antaRNA

EDE := Ensemble Defect
Zadeh, Joseph N., et al., 2011, Sequence Design via Efficient Ensemble Defect Optimization J Comput Chem 32: 439-452

"Nature scores!"

Rhiju Das

Ensemble Defect based Design

sRNA binding regulates accessibility of region around the RBS and AUG and therefor activates expression

- NUPACK:Design for optimization towards ensemble defect
- GFP reporter assays with flow cytometry
- Iterative design approach: Tested various loop sizes, trigger RNA lengths, binding site length and their effect
- in silico screening to predict cross-talk, free energy of structural features, duplex formation, stability of toehold switch region

Green, A., et al., 2014, Toehold Switches: De-Novo-Designed Regulators of Gene Expression, Cell, 159, 925-939

Complexity of Sequence Design II

- Combination of sequence and one structure constraint

$$
((((\ldots)))) .
$$

NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences

- Utilize the ensemble defect as objective for optimization

Combination of sequence and multiple structural constraints

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GNNNNNVNNNNN

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))) . ((((....))))
GNNNNNVNNNNN

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))) . ((((....))))
GNNNNNVNNNYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GNNNNNVNNNYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRNNNNVNNNYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRNNNNVNNNYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRNNNNVNNYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRNNNNVNNYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRRNNNVNNYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRRNNNVNNYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRRNNNVNYYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRRNNNVNYYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint ((((...)))) .
NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences
- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRRRNNVNYYYY

Complexity of Sequence Design II

- Combination of sequence and one structure constraint

NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences

- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((()....))))

GRRRNNVNYYYY
Propagation of individual constraints to multiple positions
possible sequences

Complexity of Sequence Design II

- Combination of sequence and one structure constraint

NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences

- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((()....))))

GRRRNNVYYYYY
Propagation of individual constraints to multiple positions
possible sequences

Complexity of Sequence Design II

- Combination of sequence and one structure constraint

NGNNNNVNNNNN $=3 \times 4^{3} \times 2 \times 6^{3}=82,944$ possible sequences

- Utilize the ensemble defect as objective for optimization

- Combination of sequence and multiple structural constraints ((((...)))). ((((....))))
GRRRNNVYYYYY
- Propagation of individual constraints to multiple positions GRRRNNVYYYYY $=1 \times 2^{8} \times 4^{2} \times 3=12,288$ possible sequences

Assignment of unconstraint paths

$((((\ldots)))$.
$((((\ldots)))$.
NNNNNNNNNNN
$1 . \ldots 6 \ldots 12$

Assignment of unconstraint paths

Assignment of unconstraint paths

- Possible assignments for a base pair:

Assignment of unconstraint paths

- Possible assignments for a base pair:

Assignment of unconstraint paths

- Possible assignments for a base pair:

Assignment of unconstraint paths

- Possible assignments for a base pair:

Assignment of unconstraint paths

- Possible assignments for a base pair:

6

Assignment of unconstraint paths

- Possible assignments for a base pair: 6

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Assignment of unconstraint paths

- Possible assignments for a base pair: 6

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\sum_{i, j} B P T[i, j]=6
$$

- Possible assignments for a path of length two

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Possible assignments for a path of length two:

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

$$
(\quad)
$$

- Possible assignments for a path of length two:

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
A U
$$

$$
C \quad G
$$

$$
\begin{array}{ll}
G & C \\
G & U
\end{array}
$$

$$
\begin{array}{ll}
U & A \\
U & G
\end{array}
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

- Possible assignments for a path of length two:

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{ll}
(&) \\
A & (\\
A & U
\end{array}
$$

$$
C \quad G
$$

$$
\begin{array}{ll}
G & C \\
G & U
\end{array}
$$

$$
\begin{array}{ll}
U & A \\
U & G
\end{array}
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

- Possible assignments for a path of length two:

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{lll}
(&) & j \\
A & (&) \\
A & U & A \\
C & U & G \\
C & G & C \\
C & G & U \\
G & C & G \\
G & U & A \\
G & U & G \\
U & A & U \\
U & G & U \\
U & G & C
\end{array}
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

- Possible assignments for a path of length two:

10

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{lll}
(&) & \\
\dot{A} & (&) \\
A & U & A \\
A & U &
\end{array}
$$

$$
\begin{array}{lll}
C & G & C \\
C & G & U
\end{array}
$$

$$
\begin{array}{lll}
C & G & U \\
G & C & G
\end{array}
$$

$$
G \cup A
$$

$$
G \quad \cup \quad G
$$

$$
\begin{array}{lll}
U & G & U \\
U & G & C
\end{array}
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Possible assignments for a path of length two:

$$
10
$$

$$
B P T^{2}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\sum_{i, j} B P T[i, j]=6
$$

- Possible assignments for a path of length two:

$$
\sum_{i, j} B P T^{2}[i, j]=10
$$

$$
B P T^{2}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

- Possible assignment for a path of length L :

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Possible assignments for a path of length two:

$$
\sum_{i, j} B P T^{2}[i, j]=10
$$

$$
B P T^{2}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

- Possible assignment for a path of length L :

Assignment of unconstraint paths

(6) (7)

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Possible assignments for a path of length two:

$$
\sum_{i, j} B P T^{2}[i, j]=10
$$

$$
B P T^{2}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

- Possible assignment for a path of length L :

$$
\sum_{i, j} B P T_{[i, \lambda}
$$

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Possible assignments for a path of length two:

$$
\sum_{i, j} B P T^{2}[i, j]=10
$$

$$
B P T^{2}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

- Possible assignment for a path of length L :

Assignment of unconstraint paths

- Possible assignments for a base pair:

$$
\sum_{i, j} B P T[i, j]=6
$$

$$
\begin{aligned}
& 4^{3} \times \sum_{i, j} B P T^{8}[i, j] \\
& =4^{3} \times 178 \\
& =11,392
\end{aligned}
$$

$$
B P T=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Possible assignments for a path of length two:

$$
\sum_{i, j} B P T^{2}[i, j]=10
$$

$$
B P T^{2}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

- Possible assignment for a path of length L :

$$
\sum_{i, j} B P T^{L}[i, j]
$$

Counting the correct way

$$
\begin{aligned}
& ((((\ldots)))) . \\
& ((((\ldots . .)))) \\
& \text { GNNNNNVNNNNN }
\end{aligned}
$$

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Counting the correct way

$$
\begin{aligned}
& ((((\ldots)))) . \\
& ((((\ldots .)))) \\
& \text { GNNNNNVNNNNN }
\end{aligned}
$$

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Counting the correct way

$$
\begin{aligned}
& ((((\ldots)))) . \\
& ((((\ldots . .)))) \\
& \text { GNNNNNVNNNNN }
\end{aligned}
$$

(1) (1)

$$
B P T^{7}=\left[\begin{array}{cccc}
0 & 8 & 0 & 13 \\
8 & 0 & 13 & 0 \\
0 & 13 & 0 & 21 \\
13 & 0 & 21 & 0
\end{array}\right]
$$

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Counting the correct way

$$
\begin{aligned}
& ((((\ldots)))) . \\
& ((((\ldots . .)))) \\
& \text { GNNNNNVNNNNN }
\end{aligned}
$$

(1) (1)

$$
\begin{gathered}
B P T^{7}=\left[\begin{array}{cccc}
0 & 8 & 0 & 13 \\
8 & 0 & 13 & 0 \\
0 & 13 & 0 & 21 \\
13 & 0 & 21 & 0
\end{array}\right] \\
2 \times(13+21) \times 4^{2} \times 3=3,264
\end{gathered}
$$

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Uniform Sampling of a Base Pair

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Uniform Sampling of a Base Pair

$$
\begin{aligned}
& P(A U)=\frac{1}{4} \times 1=\frac{1}{4} \\
& P(U G)=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}
\end{aligned}
$$

Uniform Sampling of a Base Pair

$$
\begin{aligned}
& P(A U)=\frac{1}{4} \times 1=\frac{1}{4} \\
& P(U G)=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}
\end{aligned}
$$

Uniform Sampling of a Base Pair

$$
\begin{gathered}
x_{1} \\
\text { weighted decision }=\text { uniform sampling } \\
x_{2} \\
P\left(x_{1}=U\right)=\frac{N\left(\left\{x_{1}, x_{2}\right\} \mid x_{1}=U\right)}{N\left(x_{1}, x_{2}\right)}=\frac{2}{6} \\
P(A U)=\frac{1}{6} \times 1=\frac{1}{6} \\
P(U G)=\frac{2}{6} \times \frac{1}{2}=\frac{1}{6}
\end{gathered}
$$

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Uniform Sampling of a Base Pair

$$
\begin{gathered}
x_{1} \\
\text { weighted decision }=\text { uniform sampling } \\
x_{2} \\
P\left(x_{1}=U\right)=\frac{N\left(\left\{x_{1}, x_{2}\right\} \mid x_{1}=U\right)}{N\left(x_{1}, x_{2}\right)}=\frac{2}{6} \\
P(A U)=\frac{1}{6} \times 1=\frac{1}{6} \\
P(U G)=\frac{2}{6} \times \frac{1}{2}=\frac{1}{6}
\end{gathered}
$$

Flamm, C., et al., 2001, Design of multistable RNA molecules, RNA, 7(2), 254-256

Example: 35 nt long and three structural states

$$
\begin{aligned}
& ((((\ldots)))) \ldots(((\ldots)))
\end{aligned}
$$

$$
\begin{aligned}
& ((((((() . . .))))((((\ldots . .)))) \ldots)) \\
& \text { Size of solution space: 1.42658e+14 } \\
& \text { (29) } \\
& \text { (30) } \\
& \text { (12) }
\end{aligned}
$$

Example: 35nt long and four structural states

$$
\begin{aligned}
& \text { ((((....))))....((((....)))) } \\
& \text {........((((....((((....))))....)))) } \\
& \text { (((()(((....))))((((....))))....)))) } \\
& \text {.((((....))))...((((....))))......... } \\
& \text { Size of solution space: 1.24018e+13 } \\
& \text { (20) } \\
& \text { (29) } \\
& \text { (23) } \\
& \text { (3) } \\
& \text { (28) }
\end{aligned}
$$

Example: 35nt long and five structural states

$$
\begin{aligned}
& \text { ((((....))))....((((....)))) } \\
& \text {.......((((....((((....))))....)))) } \\
& \text { (((()(((....))))((((....))))....)))) } \\
& \text {.((((....))))...((((....))))......... } \\
& \text {.((((....))))...((((((........)))))) } \\
& \text { Size of solution space: 7.08853e+10 }
\end{aligned}
$$

Integrated Design Tool

RNAblueprint

A tool that implements a graph coloring approach to sample nucleic acid sequences ...

- compatible to multiple structural and sequence constraints
- fairly drawn from the whole solution space

https://github.com/ViennaRNA/RNAblueprint
Hammer, S., et al., 2017, RNAblueprint: flexible multiple target nucleic acid sequence design. Bioinformatics 33(18): 2850-58.

Objective Function

- Not all compatible sequences are equally good when evaluated under certain assumptions.
- Depending on the application the objective function needs to be developed.

Objective Function

- Not all compatible sequences are equally good when evaluated under certain assumptions.

```
((((...)))) .
((((....))))
```

GNNNNNVNNNNN

$$
f(x)=\underbrace{\left(\left(E O S_{1}+E O S_{2}\right)-2 E F E\right)}_{\text {dominate ensemble of structures }}+\underbrace{\xi\left|E O S_{1}-E O S_{2}\right|}_{\text {equally stable }}
$$

$$
\begin{array}{ll}
f(\text { GGGAGCCCC })=3.82 & f(\text { GAAUCAUUU })=8.42 \\
f(\text { GGGUCCCCU })=4.71 & f(\text { GGGGAUUCU })=5.71
\end{array}
$$

Depending on the application the objective function needs to be developed.

Objective Function

- Not all compatible sequences are equally good when evaluated under certain assumptions.

```
((((....)))).
((((....))))
```

GNNNNNVNNNNN

$$
f(x)=\underbrace{\left(\left(E O S_{1}+E O S_{2}\right)-2 E F E\right)}_{\text {dominate ensemble of structures }}+\underbrace{\xi\left|E O S_{1}-E O S_{2}\right|}_{\text {equally stable }}
$$

$$
\begin{array}{ll}
f(\text { GGGAGCCCC })=3.82 & f(\text { GAAUCAUUU })=8.42 \\
f(\text { GGGUCCCCU })=4.71 & f(\text { GGGGAUUCU })=5.71
\end{array}
$$

- Depending on the application the objective function needs to be developed.

RNA design aims on the reverse

Sequence \Leftarrow Structure \Leftarrow Function

(1) Which sequence optimally folds into given target structure(s)?
(3) How to implement novel functions?

RNA design aims on the reverse

Sequence \Leftarrow Structure \Leftarrow Function

(1) Which sequence optimally folds into given target structure(s)?
(2) How to implement novel functions?

Design Pipeline

Transcription/Translation

tRNA processing mechanism

Artificial Riboswitch

- Theophylline triggered
- Transcriptional
- Reporter Gene

RNaseP riboswitch idea

Copy\&Paste Design

```
construct I (RNAseP RS, R273)
> Theophylline RS w/o poly \(U\) fused to su3+
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGAAAUCUCUGAAGUGCUGCCAAGGUGGGGUUCC
CGAGCGGCCAAAGGGAGCAGACUCUAAAUCUGCCGUCAUCGACUUCGAAGGUUCGAAUCCUUCCCCCACCACCA
```


tRNA spacer aptamer

- This construct is without the original 5'-leader sequence of the tRNA

Figure 1: ONPG-assay with construcht I (RNase R RS).

Timing is important!

Design Pipeline

Constrained Sampling

Sequence + Structure constraints \rightarrow

Objective Functions

- Accessibility score [0,1]:

$$
f(x)=P_{x, C_{\text {theo }}}\left(\Theta_{\text {leader }}\right) \cdot\left(1-P_{x}\left(\Theta_{\text {leader }}\right)\right)
$$

- State score [0,1]:

$$
\begin{aligned}
f(x) & =\underbrace{P_{x}\left(\Theta_{\text {leader }- \text { stem }}\right)}_{\text {leder-stem } \rightarrow 1} \cdot \underbrace{\left(\frac{1-P_{x}\left(\Theta_{\text {aptamer }}\right)+P_{x}\left(\Theta_{\text {leader-stem }}\right)}{2}\right)^{2}}_{\text {difference to aptamer } \rightarrow 1} \\
& \cdot \underbrace{P_{x, C_{\text {theo }}}\left(\Theta_{\text {aptamer }}\right)}_{\text {aptamer } \rightarrow 1} \cdot \underbrace{\left(\frac{\left.1-P_{x, C_{\text {theo }}\left(\Theta_{\text {leader }- \text { stem }}\right)+P_{x, C_{\text {theo }}}\left(\Theta_{\text {aptamer }}\right)}^{2}\right)^{2}}{2}\right.}_{\text {difference to leader-stem } \rightarrow 1}
\end{aligned}
$$

[^1]
Laboratory Analysis

LIGAND DEPENDENT RNA SWITCH

Findeiß, S., Hammer, S., Wolfinger, M. T., KühnI, F., Flamm, C., \& Hofacker, I. L. (2018). In silico design of ligand triggered RNA switches. Methods.

Thanks to...

lab members:

- Stefan Hammer
- Felix Kühnl
- Peter F. Stadler
- Petra Pregel
- Jens Steuck
collaborators:
- Anna Ender, Leipzig
- Chris Günzel, Leipzig
- Mario Mörl, Leipzig
- Christina Weinberg, Leipzig
- Ilka Axmann, Düsseldorf
- Sebastian Will, Vienna
- Christoph Flamm, Vienna
- Ivo L. Hofacker, Vienna
- Yann Ponty, Palaiseau
- Michael Ryckelynck, Strasbourg

[^0]: EOS := Energy Of Structure
 MFE := Minimum Free Energy
 EFE := Ensemble Free Energy
 PDE := Probability Defect
 EDE := Ensemble Defect

[^1]: x...Sequence
 $\Theta \ldots$ Structure
 $C_{\text {theo }} \ldots$. Soft-Constraint for Theophylline

