Comparative methods for RNA structure analysis

Sebastian Will

Institute for Theoretical Chemistry, University of Vienna will at tbi.univie.ac.at

course material: https://www.tbi.univie.ac.at/~will/AlgoSB19

AlgoSB 2019—Day IV

Comparative RNA Analysis—What?

- compare (potentially) homologous RNAs
 - fdhA CGCCACCCUGCGAACCCAAUAUAAAAUAAUACAAGGGAGCAGGUGGCG
 - hdrA GGCACCACUCGAAGGCUAAGCCAAAGUGGUGCU
 - vhuD GUUCUCUCGGGAACCCGUCAAGGGACCGAGAGAAC
 - vhuU AGCUCACAACCGAACCCAUUUGGGAGGUUGUGAGCU
 - fwdB AUGUUGGAGGGGAACCCGUAAGGGACCCUCCAAGAU
 - seld UUACGAUGUGCCGAACCCUUUAAGGGAGGCACAUCGAAA
 - fruA CCUCGAGGGGAACCCGAAAGGGACCCGAGAGG

Comparative RNA Analysis—What?

- compare (potentially) homologous RNAs
 - fdhA CGCCACCCUGCGAACCCAAUAUAAAAUAAUACAAGGGAGCAGGUGGCG
 - hdrA GGCACCACUCGAAGGCUAAGCCAAAGUGGUGCU
 - vhuD GUUCUCUCGGGAACCCGUCAAGGGACCGAGAGAAC
 - vhuU AGCUCACAACCGAACCCAUUUGGGAGGUUGUGAGCU
 - fwdB AUGUUGGAGGGGAACCCGUAAGGGACCCUCCAAGAU
 - seld UUACGAUGUGCCGAACCCUUUAAGGGAGGCACAUCGAAA
 - fruA CCUCGAGGGGAACCCGAAAGGGACCCGAGAGG

• align

fdhA	CGC-CACCCUGCGAACCCAAUAUAAAAUAAUACAAGGGAGCAG-GUGG-CG
hdrA	GGC-ACC-ACUCGAAGGCUAAGCCAAAGU-GGUG-CU
vhuD	GUU-CUC-UCGGGAACCCGUCAAGGGACCGA-GAGA-AC
vhuU	AGC-UCACAACCGAACCCAUUUGGGAGGUUGUGAG-CU
fwdB	AUG-UUGGAGGGGAACCCGUAAGGGACCCUCCAAG-AU
selD	UUACGAUGUGCCGAACCCUUUAAGGGAGGCACAUCGAAA
fruA	CC-UCGAGGGGAACCCGAAAGGGACCCGAGA-GG

Comparative RNA Analysis—What?

- compare (potentially) homologous RNAs
 - fdhA CGCCACCCUGCGAACCCAAUAUAAAAUAAUACAAGGGAGCAGGUGGCG
 - hdrA GGCACCACUCGAAGGCUAAGCCAAAGUGGUGCU
 - vhuD GUUCUCUCGGGAACCCGUCAAGGGACCGAGAGAAC
 - vhuU AGCUCACAACCGAACCCAUUUGGGAGGUUGUGAGCU
 - fwdB AUGUUGGAGGGGAACCCGUAAGGGACCCUCCAAGAU
 - seld UUACGAUGUGCCGAACCCUUUAAGGGAGGCACAUCGAAA
 - fruA CCUCGAGGGGAACCCGAAAGGGACCCGAGAGG
- align
 - fdhA CGC-CACCCUGCGAACCCCAAUAUAAAAUAAUACAAGGGAGCAG-GUGG-CG
 - hdrA GGC-ACC-ACUCGAAGGCU-----AAGCCAAAGU-GGUG-CU
 - vhuD GUU-CUC-UCGGGAACCCGU-----CAAGGGACCGA-GAGA-AC
 - vhuU AGC-UCACAACCGAACCCAU-----UUGGGAGGUUGUGAG-CU
 - fwdB AUG-UUGGAGGGGAACCCGU-----AAGGGACCCUCCAAG-AU
 - selD UUACGAUGUGCCGAACCCUU-----UAAGGGAGGCACAUCGAAA
 - fruA CC-UCG--AGGGGAACCCGA-----AAGGGACCC--GAGA-GG
- consider and learn about RNA structure

Comparative RNA Analysis—Why?

overcome limitations of prediction from single sequences

Program	Sens	PPV	MCC	F-measure
RNAfold 2.1.9	0.742	0.795	0.767	0.765
UNAfold 3.8	0.693	0.767	0.727	0.725
RNAstructure 5.7	0.716	0.781	0.746	0.744

- single sequence stability does not help for ncRNA gene finding:
 "… in general, the predicted stability of structural RNAs is not sufficiently distinguishable from the predicted stability of random sequences"¹
- pure sequence alignment cannot properly *compare remote RNAs "...sequence alignment alone, using the current algorithms, is generally inappropriate <50–60% sequence identity.*"²

¹Rivas,Eddy; 2001; *doi:10.1186/1471-2105-2-8*

²Gardner, Wilm, Washietl; 2005; *doi:10.1093/nar/gki541*

Comparative RNA Analysis—How?

ALIGN, then ANALYSE

- Covariation, R2R
- R-scape
- Pfold
- RNAalifold
- RNAz
- CMs, SCFGs, Infernal

- RNAforester, MARNA
- noteworthy, algorithmically interesting (e.g. tree alignment vs. tree editing), ...

... but neglected here for time constraints :(

Simultaneous ALIGN and FOLD

- The classic: Sankoff simultaneous alignment and folding (SA&F)
- "Gold standard" for RNA comparison
- Heuristic short cuts: STRAL, TurboFold II
- Sankoff-style: Dynalign, stemloc, Foldalign
- Fast SA&F (PMcomp-style): PMcomp, LocARNA, RAF, LocARNA-P, SPARSE

- clustering structures of one RNA³
- structure-based clustering of RNAs (RNAclust, GraphClust)

³e.g. Ding et al.; RNA 2005; *doi:10.1261/rna.2500605*

ALIGN, then ANALYSE

- Covariation, R2R
- R-scape
- Pfold
- RNAalifold
- RNAz
- CMs, SCFGs, Infernal

Covariation hints at structure

- Functional RNAs are under selective pressure to preserve their secondary structure
- \rightarrow Mutations must be compensated! (or wobble)

..((...)).. auGCaugaGCuc auCCaugaGGuc auCGaugaCGuc auUGaugaCGuc

• Inversely: compensatory mutations hint at functional structure

Measuring Covariation: Mutual Information

123456789012 ..((...)).. auGCaugaGCuc auCCaugaGGuc auCGaugaCGuc

Mutual Information (of columns *i* and *j*):

$$MI_{i,j} = \sum_{a,b \in \{A,C,G,U\}} f_{i,j}(ab) \log_2 \frac{f_{i,j}(ab)}{f_i(a)f_j(b)}$$

[aka relative entropy, Kullback-Leibler divergence]

• $M_{1,12} = f_{1,12}(AC) \log \frac{f_{1,12}(AC)}{f_1(A)f_{12}C} = 1 \log 1 = 0$ • $M_{4,9} = f_{4,9}(CG) \log \frac{f_{4,9}(CG)}{f_4(C)f_9(G)} + f_{4,9}(GC) \log \frac{f_{4,9}(GC)}{f_4(G)f_9(C)}$ $\approx 0.66 \log 0.66/0.22 + 0.33 \log 0.33/0.22 \approx 0.86$

convention: " $0 \log 0 = 0$ "

Covariation in Consensus Structure Visualization

```
# STOCKHOLM 1.0
martian CAGGGAAACCUGAUUUUAGGA
venusian CGU.UUCG.ACGUA...AGGA
#=GC SS_cons <<<<...>>>>......
#=GF R2R_LABEL ...[...]..1...2Ţ...
#=GF R2R var_backbone_range 1 2
#=GF R2R turn_ss Ţ -90
// label & use
```

Visualizations created by the RNA drawing tool *R2R*⁴ Covarying mutations are highlighted (green-ish)

⁴Weinberg, Breaker; 2011; *doi:10.1186/1471-2105-12-3*

Significance of covariation in R-scape⁵

Independent positions show apparent covariation due to phylogeny

- to generate null model: estimate tree, then shuffle mutations
- in shuffled alignment make exactly the same mutations at same branches at random sequence positions
- preserves composition and substitutions, scrambles dependencies
- Overcomes problem of 'apparent' covariation, but destroys local conservation

⁵Rivas, Clements, Eddy. 2017. *doi:10.1038/nmeth.4066*

Significance of covariation in R-scape⁵

- to generate null model: estimate tree, then shuffle mutations
- in shuffled alignment make exactly the same mutations at same branches at random sequence positions
- preserves composition and substitutions, scrambles dependencies
- Overcomes problem of 'apparent' covariation, but destroys local conservation

⁵Rivas, Clements, Eddy. 2017. *doi:10.1038/nmeth.4066*

Covariation and Thermodynamics: RNAalifold⁶

AF008220	GGAGGAUU-AGCUCAGCUGGGAGAGCAUCUGCCUUACAAGCAGAGGGUCGGCGGUUCGAGCCCGUCAUCCUCCA
M68929	GCGGAUAU-AACUUAGGGGUUAAAGUUGCAGAUUGUGGCUCUGAAAA-CACGGGUUCGAAUCCCGUUAUUCGCC
X02172	GCCUUUAU-AGCUUAG-UGGUAAAGCGAUAAACUGAAGAUUUAUUUACAUGUAGUUCGAUUCUCAUUAAGGGCA
Z11880	GCCUUCCU-AGCUCAG-UGGUAGAGCGCACGGCUUUUAACCGUGUGGUCGUGGGUUCGAUCCCCACGGAAGGCG
D10744	GGAAAAUUGAUCAUCGGCAAGAUAAGUUAUUUACUAAAUAAGGAUUUAAUAACCUGGUGAGUUCGAAUCUCACAUUUUCCG

⁶Bernhart et al. 2008. *doi:10.1186/1471-2105-9-474*

Covariation and Thermodynamics: RNAalifold⁶

AF008220	GGAGGAUU-AGCUCAGCUGGGAGAGCAUCUGCCUUACAAGCAGAGGGUCGGCGGUUCGAGCCCGUCAUCCUCCA
M68929	GCGGAUAU-AACUUAGGGGUUAAAGUUGCAGAUUGUGGCUCUGAAAA-CACGGGUUCGAAUCCCGUUAUUCGCC
X02172	GCCUUUAU-AGCUUAG-UGGUAAAGCGAUAAACUGAAGAUUUAUUUACAUGUAGUUCGAUUCUCAUUAAGGGCA
Z11880	GCCUUCCU-AGCUCAG-UGGUAGAGCGCACGGCUUUUAACCGUGUGGUCGUGGGUUCGAUCCCCACGGAAGGCG
D10744	GGAAAAUUGAUCAUCGGCAAGAUAAGUUAUUUACUAAAUAAUAGGAUUUAAUAACCUGGUGAGUUCGAAUCUCACAUUUUCCG

Predict consensus structure that is

- thermodynamically good
- ideally possible for all sequences (tolerate defects)
- supported by covariation

⁶Bernhart et al. 2008. *doi:10.1186/1471-2105-9-474*

RNAalifold—or how to fold an alignment

Given: a multiple alignment

Goal: predict the (non-crossing) consensus structure of the alignment

RNAalifold—or how to fold an alignment

Given: a multiple alignment

Goal: predict the (non-crossing) consensus structure of the alignment

Trick: alignment = *sequence* of columns

Algorithmic ideas:

- The optimal consensus structure minimizes a combination of
 - free energies for all the RNA sequences and
 - the conservation score (= evidence for base pairing).
- Since the consensus structure pairs columns and is non-crossing, its prediction works similar to the Zuker algorithm

RNAalifold Recursions

$$F_{ij} = \min\{F_{ij-1}; \min_{i \le k < j-m} F_{ik-1} + C_{kj}\}$$

$$C_{ij} = \beta \gamma(i,j)$$

$$+ \min \begin{cases} \sum_{\substack{1 \le \ell \le K \\ min \\ i < i' < j' < j \\ 1 \le \ell \le K \end{cases}} C_{i'j'} + \mathcal{I}_{\ell}(i,j,i',j') \\ \min_{i < k < j} M_{i+1k} + M_{k+1j-1} + aK \end{cases}$$

$$M_{ij} = \min \begin{cases} M_{ij-1} + cK; M_{i+1j} + cK; C_{ij} + bK \\ \min_{i < k < j} M_{ik} + M_{k+1j} \end{cases}$$

 $\mathcal{H}_{\ell}(i,j)$ and $\mathcal{I}_{\ell}(i,j,i',j')$: energy contributions for ℓ -th sequence.

Note: RNAalifold implements an unambiguous variant.

RNAalifold Conservation Score

conservation score $\gamma(i, j) = covariation boni + penalties$

covariation boni:

for each pair of sequences, where columns i and j could base pair: average hamming distances of left ends and right ends

penalties:

for each sequence:

- if entries in columns i and j
 - are non-complementary bases: δ
 - are one base and one gap: δ
 - are both gaps: 0.25δ

RNAalifold Example

(-49.58 = -17.46 + -32.12)

Structure conservation

Recall: Given an alignment, RNAalifold computes the MFE (including conservation score) of any consensus structure

Question: Is there a truly-conserved consensus structure?

Structure conservation

Recall: Given an alignment, RNAalifold computes the MFE (including conservation score) of any consensus structure

Question: Is there a truly-conserved consensus structure?

Requires to put RNAalifold's MFE into relation! Is it as large as the average single sequence MFE's (from RNAfold)?

Structure Conservation Index (SCI) of alignment A of K sequences S_i

$$SCI(\mathcal{A}) := rac{MFE_{\mathsf{alifold}}(\mathcal{A})}{mean_i[MFE(S_i)]}$$

SCI Example

Single MFEs (RNAfold): -31.20, -52.80, -22.00, -28.90, -35.60, -13.90, -13.90 *Consensus MFE* (RNAalifold): -25.67 (e -18.15, cons -7.52)

Structure conservation index (SCI):

$$\frac{-25.6}{mean(-31.20, -52.80, -22.00, -28.90, -35.60, -13.90, -13.90)} = \frac{-25.6}{-28.33} \approx 0.91$$

Question: Given alignment, is there an ncRNA?

- is there a truly conserved structure?
- can the single sequences form stable structures?

⁷Washietl, Hofacker, Stadler. 2005. *doi:10.1073/pnas.0409169102*

Question: Given alignment, is there an ncRNA?

• is there a truly conserved structure?

- significance of structure conservation (SCI)

• can the single sequences form stable structures?

- significance of stabilities (MFEs)

⁷Washietl, Hofacker, Stadler. 2005. *doi:10.1073/pnas.0409169102*

Question: Given alignment, is there an ncRNA?

is there a truly conserved structure?

- significance of structure conservation (SCI)

• can the single sequences form stable structures?

- significance of stabilities (MFEs)

RNAz evaluates alignment by

- computing SCI
- estimating Z-scores of MFEs (in relation to seq. composition)
- relating them to each other and alignment entropy

⁷Washietl, Hofacker, Stadler. 2005. *doi:10.1073/pnas.0409169102*

Question: Given alignment, is there an ncRNA?

is there a truly conserved structure?

- significance of structure conservation (SCI)

• can the single sequences form stable structures?

- significance of stabilities (MFEs)

RNAz evaluates alignment by

- computing SCI
- estimating Z-scores of MFEs (in relation to seq. composition)
- relating them to each other and alignment entropy

For high efficiency

- the MFE Z-scores are estimated after function learning from pre-computed distributions (SVM-based)
- combination via trained SVM

⁷Washietl, Hofacker, Stadler. 2005. *doi:10.1073/pnas.0409169102*

RNAz Screen

RNA families: **CMs**—Infernal⁸—Rfam⁹

- Infernal: characterize RNA family and fast search for members
 Inference of RNA alignments
- fundamental for *Rfam* (database of RNA families) Rfam 14.0 (August 2018, 2791 families)
 'hand-curated' seed alignments ⇒_{Infernal} full alignments
- models RNA families by *Stochastic Context Free Grammars* (*SCFGs*) as *Consensus Models* (*CMs*)

⁸Nawrocki, Eddy. 2013. doi:10.1093/bioinformatics/btt509 ⁹http://rfam.xfam.org/

Infernal Consensus Models (CMs)

- CMs are grammatical description of RNA families
- learn transition and output probabilities from alignment
- CMs extend profile HMMs (Pfam)

Infernal Consensus Models

Comparative RNA Analysis—How?

Simultaneous ALIGN and FOLD

- The classic: Sankoff simultaneous alignment and folding (SA&F)
- "Gold standard" for RNA comparison
- Heuristic short cuts: STRAL, TurboFold II
- Sankoff-style: Dynalign, stemloc, Foldalign
- Fast SA&F (PMcomp-style): PMcomp, LocARNA, RAF, LocARNA-P, SPARSE

Simultaneous Alignment and Folding¹⁰

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = auugccgcugaccggcacgccaucggaaucccgaucgggucagcggca

sequence similarity + energy A + energy B \rightarrow opt

where alignment, structure A, & structure B are **compatible**

¹⁰Sankoff, 1985

Simultaneous Alignment and Folding¹⁰

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = auugccgcugaccggcacgccaucggaaucccgaucgggucagcggca

sequence similarity + energy A + energy B \rightarrow opt

where alignment, structure A, & structure B are **compatible**

¹⁰Sankoff, 1985

Sankoff's SA&F Algorithm

Dynamic Programming

Sankoff's SA&F Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker] \times Sequence Alignment

Sankoff's SA&F Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker] \times Sequence Alignment

 $O(n^6)$ = "extreme computational cost"

• energies composed of loop energies

¹¹Hofacker et al., 2004. doi:10.1093/bioinformatics/bth229

• energies composed of loop energies

¹¹Hofacker et al., 2004. doi:10.1093/bioinformatics/bth229

• pseudo-energies composed of "base pair energies"

¹¹Hofacker et al., 2004. doi:10.1093/bioinformatics/bth229

• pseudo-energies composed of "base pair energies"

Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

¹¹Hofacker et al., 2004. doi:10.1093/bioinformatics/bth229

pseudo-energies composed of "base pair energies"

Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

• cheaper computation (at same complexity)

¹¹Hofacker et al., 2004. doi:10.1093/bioinformatics/bth229

PMcomp: Nussinov-style Sankoff — Recursion

$$M_{ij;kl} = \max \begin{cases} M_{ij-1;kl-1} + \sigma(A_j, B_l) \\ M_{ij-1;kl} + \gamma \\ M_{ij;kl-1} + \gamma \\ \max_{j'l'} M_{ij'-1;kl'-1} + D_{j'j;l'l} \\ D_{ij;kl} = M_{i+1j-1;k+1l-1} + \tau(i,j,k,l) \end{cases}$$

PMcomp — Scoring

$$M_{ij;kl} = \max \begin{cases} M_{ij-1;kl-1} + \sigma(A_j, B_l) \\ M_{ij-1;kl} + \gamma \\ M_{ij;kl-1} + \gamma \\ \max_{j'l'} M_{ij'-1;kl'-1} + D_{j'j;l'l} \\ D_{ij;kl} = M_{i+1j-1;k+1l-1} + \tau(i,j,k,l) \end{cases}$$

Idea:

- $\tau(i,j,k,l) = \Psi_{ij}^A + \Psi_{kl}^B$
- $\Psi_{ii}^{A}, \Psi_{kl}^{B}$: log odds scores for base-pairs
- "McCaskill"-basepair probabilities vs. background
- Hofacker et al. Alignment of RNA base pairing probability matrices. Bioinformatics, 2004.

Complexity PMcomp

$$M_{ij;kl} = \max \begin{cases} M_{ij-1;kl-1} + \sigma(A_j, B_l) \\ M_{ij-1;kl} + \gamma \\ M_{ij;kl-1} + \gamma \\ \max_{j'l'} M_{ij'-1;kl'-1} + D_{j'j;l'l} \\ D_{ij;kl} = M_{i+1j-1;k+1l-1} + \tau(i,j,k,l) \end{cases}$$

- $O(n^2 \cdot m^2)$ entries in M
- per entry: O(nm) time

Total Complexity: $O(n^3m^3)$ time, $O(n^2m^2)$ space

LocARNA¹²: Fast and Accurate Sankoff

Ideas:

- follow PMcomp idea for scoring
- only consider significant base pairs: "cut-off probability"

- reformulate recursion
- profit in time and space complexity

¹²Will et al., 2007. *doi:10.1371/journal.pcbi.0030065*

Effect of Base-Pair Filtering

 $p_{\rm cutoff} = 0.01$

Effect of Base-Pair Filtering

 $p_{\rm cutoff} = 0.05$

Effect of Base-Pair Filtering

 $p_{\rm cutoff} = 0.1$

LocARNA Basic Algorithm: Matrices

LocARNA Basic Algorithm: Matrices

LocARNA Basic Algorithm: Matrices

LocARNA Basic Algorithm: Recursion

LocARNA Basic Algorithm: Recursion

Complexity LocARNA

$$M^{a\,b}(i,j) = \max \begin{cases} M^{a\,b}(i-1,j-1) + \sigma(A_i,B_j) \\ M^{a\,b}(i-1,j) + \gamma \\ M^{a\,b}(i,j-1) + \gamma \\ \max_{a'b'} M^{a\,b}(a'_l-1,b'_l-1) + D(a',b') \\ \text{where } a'_r = i, b'_r = j \end{cases}$$
$$D(a,b) = M^{a\,b}(a_r-1,b_r-1) + \tau(a,b)$$

Probability threshold $p_{\text{cutoff}} \Rightarrow \deg \leq 1/p_{\text{cutoff}} \in O(1)$

- compute D(a, b) for all base pair edges: $\implies O(|P_1||P_2|) =_{(!)} O(nm)$ pairs of base pairs (a,b)
- $O(nm \cdot \text{rdeg}_1 \text{ rdeg}_2) =_{(!)} O(nm) \text{ time per } (a, b)$

Total Complexity: $O(n^2m^2)$ time, O(nm) space

LocARNA implements various extensions

- more realistic "affine" gap cost
- sequence and structure locality
- anchor and structure constraints
- multiple alignment
- scoring of stacks
- normalized local alignment
- partition functions (LocARNA-P¹³)
- stronger sparsification and added structural flexibility (SPARSE¹⁴)

¹³Will et al., 2012. *doi:10.1261/rna.029041.111* ¹⁴Will et al., 2015. *doi:10.1093/bioinformatics/btv185*

Multiple LocARNA (mlocarna): Progressive Alignment

- pairwise comparison all-2-all
- guide tree
- aligning alignments along guide tree
- heuristic (does not guarantee global optimum)

LocARNA Example Input

Unaligned sequences, unkown structures:

>fruA CCUCGAGGGGAACCCGAAAGGACCCGAGAGG >fdhA CGCCACCCUGCGAACCCAUUUAAAAUAAUACAAGGGAGCAGGUGGGG >vhuU AGCUCACAACCGAACCCAUUUGGGAGGUUGUGAGCU >hdrA GGCACCACUCGAAGCCUAAGCCAAAGUGGUGCU >vhuD GUUCUCUGGGAACCCGUCAAGGGACCGAGAGAAC >selD UUACGAUGUGCCGAACCCUUUAAGGGAGCACAUCGAAA >fwdB AUGUUGGAGGGGGACCCCUAGGGACCCUCCAAGAU

LocARNA Example Output

Similarities:

-	-123	1433	1842	2319	848	2906
-123	-	2158	1406	2361	249	1224
1433	2158	-	2555	3250	3069	5410
1842	1406	2555	-	3766	1750	2084
2319	2361	3250	3766	-	3449	3679
848	249	3069	1750	3449	-	2977
2906	1224	5410	2084	3679	2977	-

(((((vhuU,fwdB),selD),(hdrA,vhuD)),fruA),fdhA);

Alignment and consensus structure:

Probabilities of RNA alignments

 LocARNA-P extends LocARNA to compute structure alignment probabilities

(using a statiscical mechanics approach; 'partition functions')

- distinguishs sequence match and structure match probabilities
- calculates local, column-wise quality of multiple alignments:

reliability profiles

predicts ncRNA boundaries

Structure Alignment Reliability (STAR) Profile:

- clustering structures of one RNA³
- structure-based clustering of RNAs (RNAclust, GraphClust)

³e.g. Ding et al.; RNA 2005; *doi:10.1261/rna.2500605*

General ideas about RNA clustering

- cluster a set of RNAs (e.g. predicted ncRNA candidates from a genome)
 [different problem: cluster set of structures of one RNA]
- structure-based, unknown structure; ideally: plan B
- naive: $O(n^2)$ comparisons \Rightarrow Distance matrix
- first idea: hierarchical clustering (UPGMA, NJ)
- how to identify sub-groups that form distinguished clusters?

General ideas about RNA clustering

cluster a set of RNAs (e.g. predicted ncRNA candidates from a genome)

[different problem: cluster set of structures of one RNA]

- structure-based, unknown structure; ideally: plan B
- naive: $O(n^2)$ comparisons \Rightarrow Distance matrix
- first idea: hierarchical clustering (UPGMA, NJ)
- how to identify sub-groups that form distinguished clusters?

General ideas about RNA clustering

cluster a set of RNAs (e.g. predicted ncRNA candidates from a genome)

[different problem: cluster set of structures of one RNA]

- structure-based, unknown structure; ideally: plan B
- naive: $O(n^2)$ comparisons \Rightarrow Distance matrix
- first idea: hierarchical clustering (UPGMA, NJ)
- how to identify sub-groups that form distinguished clusters?

Clustering using LocARNA

- GOAL: identify groups of related RNAs
- IN: set of RNAs
- OUT: hierarchical clustering of RNAs
- Steps
 - compare RNAs all-2-all using LocARNA
 - cluster-tree by hiererchical clustering (UPGMA)
 - identify meaningful clusters
- Application: cluster RNAs from RNAz screen

The Duda rule¹⁵ in RNAclust¹⁶

Combine C1 and C2?

Test hypothesis: "C is single cluster"

- evaluate minimum free energies of sequences E_i (RNAfold)
- evaluate MFE of consensus structures *E_{cons}(C)* (RNAalifold)
- consider squared error

$$\Delta(C) = \sum_{i \in C} (E_i - E_{cons}(C))^2$$

•
$$\frac{\Delta(C1)+\Delta(C2)}{\Delta(C)} < \theta$$
, then reject

e.g. we could achieve MCC 0.8 in an evaluation on Rfam $% \left({{\left[{{{\rm{B}}_{\rm{B}}} \right]}_{\rm{A}}} \right)$

¹⁵Duda et al. Pattern Classification, 2001 ¹⁶http://www.bisinf.uni.lainnia.de//wintin/Software/RN

 $^{^{16}} http://www.bioinf.uni-leipzig.de/{\sim}kristin/Software/RNAclust/$

Clustering of RNAz ncRNA Predictions

Clustering of 3332 putative ncRNAs in Ciona intestinalis

Clustering of RNAz ncRNA Predictions

Clustering of 3332 putative ncRNAs in Ciona intestinalis

- putative ncRNAs from RNAz screen
- requires $3332 \cdot 3331/2 \approx 5.5 \times 10^6$ LocARNA alignments
- e.g. 16,000 predicted ncRNAs in Drosphila; 37,000 in Human

GraphClust¹⁷: Workflow and Results

pecies	ype	Method	Input	Size (Mb)	Time ^a	Cluster	MPIavg	$SCI_{>0.5}$
Benchmark								
Bacteria	mall ncRNAs	Misc	363	0.06	6.8 h	39	0.75	29
Human	redicted RNA elements	EvoFam	699	0.03	0.3 h	37	0.52	36
Misc	mall ncRNAs	Rfam	3900	0.51	36 h	130	0.64	98
De-novo dise	very							
Fugu	incRNAs	RNA-seq	5877	0.09	10.3 h	99	0.39	16
Fugu	redicted RNA elements	RNAz	11 287	1.36	13.3 h	97	0.39	22
Fruit fly	redicted RNA elements	RNAz	17 765	2.15	20.4 h	95	0.34	23
Human	incRNAs	RNA-seq	31 418	5.40	3.6 d	95	0.34	3
Human	redicted RNA elements	EvoFold	37 258	1.37	5.7 d	117	0.75	109
Human	'UTRs	RefSeq	118 514	21.91	12.8 d	106	0.34	13
Σ			227 081	32.88	25.7 d	815	-	349
Fugu Fugu Fruit fly Human Human E	inerivas redicted RNA elements redicted RNA elements incRNAs redicted RNA elements 'UTRs	RNA-seq RNAz RNAz RNA-seq EvoFold RefSeq	5877 11 287 17 765 31 418 37 258 118 514 227 081	1.36 2.15 5.40 1.37 21.91 32.88	10.3 h 13.3 h 20.4 h 3.6 d 5.7 d 12.8 d 25.7 d	99 97 95 95 117 106 815	0.39 0.39 0.34 0.34 0.75 0.34	1

¹⁷Heyne et al., 2012. *doi:10.1093/bioinformatics/bts224*

GraphClust's Efficiency: Graph Features

The RNAs are represented as sets of structural graph features

GraphClust's Efficiency

Main idea: Find clusters by "Approximative neighborhood queries"

• Use *Locality Sensitive Hashing (LSH)*. Let *x*, *y* be sets of features (representing two RNAs).

Define 400 independent *LSH functions* h_1, \ldots, h_{400} , such that $h_i(x) = h_i(y)$ with probability $J(x, y) = \frac{x \cap y}{x \cup y}$.

MinHashing: Choose h(x) as index of the minimal feature in x given some permutation of all features.

- build 400 *reverse* indices Z_i to find the x where $h_i(x) = c$
- now: $y \in Z_i(h_i(x))$ with probability J(x, y)!
- ⇒ find potential neighbors y of any x in constant time by searching through the most frequent elements in the multiset $\bigcup_i Z_i(h_i(x))$.

Many remaining special issues

- using sparsity for further speed up
- pseudoknots
- non-canonical base pairs
- window-less de-novo prediction
- improved multiple alignment
- local (multiple) structure alignment
- local clustering
- multiple conserved structures

• . . .

Outlook to hands-on tutorial: From A to B and back again

- Analyzing alignments
- How (not) to use LocARNA
- Finding ncRNA candidates: RNAz screens and clustering

Outlook to hands-on tutorial: From A to B and back again

- Analyzing alignments
- How (not) to use LocARNA
- Finding ncRNA candidates: RNAz screens and clustering

Please prepare for the hand on session: perform installations before class this afternoon

Detailed installation instructions are provided at the start of https://www.tbi.univie.ac.at/~will/AlgoSB19/NOTES.txt

Course Material: https://www.tbi.univie.ac.at/~will/AlgoSB19/