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Simple energy landscape 
Potential energy minima A and C separated by a transition state B

Rate of forward reaction k, units time-1 

Arrhenius: plotting ln k vs 1/T yields straight line 

k = A exp( - Eb(X) / kBT ) 

k : rate constant 

Eb : barrier height (activation energy) 

A : prefactor 

Can estimate A using harmonic transition state theory
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slope -Eb / kB

V(x)
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More complex situations

Potential energy V as a function of coordinates of N atoms 

Defined over D = 3N dimensional space
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D = 1V(x)

structural coordinate x

D = 2
x2

x1
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An early energy landscape conundrum: 
Levinthal’s paradox

Christian Anfinsen: Denature an enzyme, then renature it again 
Native catalytic activity is regained 

→ Native structure must be at a global energy minimum 

Cyrus Levinthal: take 100 residue protein, assume 10 backbone 
states/residue 

e.g., ~ phi, psi torsion angles in staggered positions 

Number of possible states  ≈ 10100 

If 1 ps/state, exhaustive search >> 10 x age of the universe 

Yet proteins do find the native state, on µs to s timescale
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Implicit assumption: 
"golf course" energy landscape

•Levinthal’s search assumes all non-native states have equal probabilities 

•Implies that the potential energy surface is flat except for the native state 

Finding native conformation unlikely (like a “hole in one”)
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V(x)
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Resolution of paradox: folding funnel
Local interactions are quickly explored 

Native-like local interactions are lower energy than the rest* 

Energy decreases as the structure approaches the native form
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Ken Dill, Peter Wolynes, ...* evolution selected them that way

V(x)
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A better golf course

"7
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Funnelled ELs are characteristic of self-structuring systems

Crystals 
Single, ordered state from highly diverse solution 

Many biological systems… 
Folding of globular proteins / RNA 

Specific protein interactions 

Self-assembly (fibers, virus capsids, ...) 

…but not all 
Misfolding/alternative structures (amyloids, ...) 

Intrinsically Disordered Proteins/Regions = ID[PR]s (promiscuous 
interactions, degradation pathways, …)
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Exploring the EL
Where does knowledge of an 
EL come from? 

Optimisation 
minimization, … 

Local characterization 
Free exploration 
Guided exploration
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V(R)
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Landmarks on an EL

Critical points: gradient = 0 
minima 

index 0: no negative eigenvalues in Hessian 
saddle points 

index 1, 2, … 3N-1 (number of negative eigenvalues) 
maxima 

index 3N: negative eigenvalues only 

Inflection points: curvature = 0 
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V(R)

← number increases exponentially with D 

←barriers between minima 

… 

←may confuse some exploration algorithms  
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Using critical points to 
characterize the EL

Minimization 
Transition paths 
Saddle points
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Minimization

1st derivative (gradient) approaches 
steepest descent (-gradient of V) 
conjugate gradients (keep list of productive directions) 

2nd derivative (curvature of energy surface) 
approaches 

Approximate curvature matrix (Hessian, also used for NM) 
Would find minimum in one step if surface were quadratic 

For a real surface, very useful once we are near the 
minimum 

e.g., BFGS 

Quality of minimization judged by magnitude of 
gradient 

would be exactly zero at true minimum
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Transition paths

Nudged Elastic Band 
“mountain pass problem” (index 1 
saddle points) 
Guess initial points between fixed 
end-points a and b (e.g., by 
interpolation) 
Connect points by springs 
Minimize cost function c(F⏊, F||) for 

the chain 

Finding saddle points (an example) 
Use connectivity criteria between a 
and b in level sets 
Critical value is highest level set for 
which a and b are not connected  
General Morse index saddles
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after UMET Univ Lille

Pang (2010) arXiv:1001.0925v1

a

b

b
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Picture the EL through disconnectivity graphs

Transform connected minima and saddle points into tree structure 

Minima separated by the lowest index-1 saddle between V(j) and V(j+1) are 
connected at level j 

Minima coalesce into connected components (super-basins) at higher and 
higher energies
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energy "lids"

Vo

Vo + ∂V

Vo + 2 ∂V

Becker and Karplus (1997) J Chem Phys
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Examples of 
disconnectivity 

graphs

Different basin interconnectivities 

give different classes of landscapes  

Different classes of dynamics

"15Wales (2003) Energy Landscapes



CH Robert	 Algorithms in Structural Bioinformatics 2019	 CIRM, Marseille

Energy landscape prevents system from attaining the global energy 
minimum 

High temperatures— rapid configurational exploration 

Low temperatures— trapping 

→ Global energy minimum difficult to reach

Non-funneled landscapes: frustration
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Frustrated systems: 
glassy behavior

Simple example: cooling of a binary 
Lennard-Jones system using MD 

Plot average energy of quenched 
snapshots ("inherent structures") 

Slower cooling allows accessing lower 
energy states, but 

amorphous 
no "native" structure 
global minimum not relevant
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slower cooling

<U>

Sastry, Debenedetti, and Stillinger (1998) Nature 393, 554
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Disconnectivity graph 
for Alanine tetra-

peptide 
Ac-(Ala)3-NHMe

Blocked amino and carboxy termini: 
four peptide bonds 

Can form one H-bonded turn of an 
alpha helix 

Extended (β) and helix (α) 
approximately equal potential energy
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Evans & Wales 2003 JCP 
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Limitations of disconnectivity graphs 

Inconsistency: Minima shown exactly but saddle points only shown within ∆E  

Only lowest transition states are seen  

Multiple transition states can be hidden in an energy step 

expand ∆E: gain visibility, lose transitions 
reduce ∆E:gain transitions,lose visibility
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Persistence analysis

Analyze connected components of sub-level sets as function of 
height (energy) 

Plot birth of each additional component on x, death on y 

see the exact persistence of each component (height of saddle) directly 

natural mechanism to denoise landscape (persistence < threshold)
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F. Cazals, course slide

in the SBL



CH Robert	 Algorithms in Structural Bioinformatics 2019	 CIRM, Marseille

Characterizing the EL 
near critical points

Shape of the surface 
Normal Modes

"21
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Idea behind NM

Restrict description to a single harmonic potential centered on a minimum-energy 
configuration 

Vibrational dynamics only 

Dynamics depend on the shape of the energy minimum at that point
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V(R)

Harmonic approximation to 
potential energy
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Total vibrational energy

Kinetic plus harmonic potential energy 
Evib  =  T(Ṙ) +  Vharmonic(R) 

Expand potential energy V about a position xo at an energy minimum 

Hessian matrix of second-order partial derivatives describes the curvature 
at the minimum 

Evib =  

Inconvenient form: T(Ṙ) sums over atoms, V(R) over Cartesian coordinates
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Root-mass weighting gives eigensystem

Introduce root-mass weighted coordinate displacements 

Symmetric form 

Can find matrix A that diagonalizes H 

Eigenvalues ωi2 

Eigenvectors qi : columns of AT 
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Evib = 1
2

3N

∑
i

·ξ2 + 1
2

3N

∑
i, j ( ∂2V

∂ξiξj )0

ξiξj

Evib = 1
2

·ξT ·ξ + 1
2 ξT Hξ (Note: Hessian becomes H, a force-constant matrix)

L = ATHA
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Normal modes: molecular motions can be 
decomposed into independent oscillators

Because L is diagonal, the total energy is that of 3N independent oscillators along 
the q’s 

Each normal coordinate qi  is an oscillating function of time along eigenvector qi, 
frequency is ωi 

       qi(t) = √(2 Ei)/ωi  cos(ωi t + φi)  

Note: angular frequencies (radians/sec) typically converted to wavenumber cm-1 by 

"25
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NM provides info on flexibility

Calculate average squared atom displacements from modes 

Correlate well with temperature factors (B-values) in xtal structures
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Using NM for entropy estimation

Typical vibrational frequencies: 

Energy level spacing is on the order of kBT (207 cm-1): 

Quantum harmonic oscillator 

Partition function  

Vibrational entropy is f(occupation of excited states) 

  

Lower frequency NM → smaller spacing → larger entropy contribution

"27TL Hill (1960), Lee & Olson (2006), …

Svib = kB

3N− 6

∑
i

{− ln (1 − exp− hνi/kBT) + hνi /kBT
exphνi/kBT − 1 }

1/100 ≲ hν
kBT

≲ 10

{hν

2 ≲ ν̄ ≲ 2000 cm− 1

q =
∞

∑
n = 0

exp− ϵn /kBT  where ϵn = hν(n + 1/2)

Why use this? e.g., MM-PBSA endpoint calcs of ∆Gassoc
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Superposition approximation for basins 

→ Thermodynamics 

… for basins and transition points 

  → Free Energy Landscape 

FEL is f(T) 

Extended β form is more stable at 298K 

lower vibrational mode 

frequencies than alpha helix → 
higher entropy 

agrees with MD sampling studies 
(Krivov&Karplus 2002 PRL)

"28

αβ

PEL

FEL

Evans & Wales 2003 JCP 

Ala tetrapeptide free-energy landscape



CH Robert	 Algorithms in Structural Bioinformatics 2019	 CIRM, Marseille

NM for kinetics: transition state theories 
depend on critical points and their shapes

Rate of forward reaction 

k = A exp( - Eb(X) / kBT ) 

Eb saddle point energy 

saddle point: productive vibrational frequency ωb 

minima: vibrational partition functions qA and qB to estimate prefactor A

"29
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What do the NM 
vectors represent?

Eigenvectors: principal axes of the (hyper) 
paraboloid describing the minimum 

“Natural” coordinate axes 

Deforming along an eigenvector q1 
- produces a 1D vibration involving all the atoms 
- has no effect on vibration along q2 

no rotational component : each Lq = λq. 
- Can thus speak of the energy of that mode. 

Orthogonal (normal) modes of vibration 

"30

Eigenvectors

Cartesian 
coordinate axes
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Normal modes summary
Advantages 

Analytical 
Less computationally demanding than MD 
Standard atomic forcefields* 
Identify correlated motions 

Disadvantages 
Extensive minimization 

Can be costly 
Structural deviation 

Diagonalize large matrices (3Nx3N) 
Memory/time 

Dependence on initial structure 
Solvent effects poorly incorporated 

Single solvent configuration if any 
Heuristic distance-dependent dielectric 

"31

Deviation from crystal struct for 83 proteins
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Elastic Network Models (ENM)

Simplified harmonic potential 

Based on Tirion (1996) PRL 

     are from initial structure 

no energy minimization 

no structural deviation 

fast

"32

do
ij
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Ensemble-less methods 
Ensemble approaches

"33

Global exploration of the EL
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Normal modes information 
can extend far beyond xo

In proteins, lowest-frequency NM directions 
predict directions of conformational change 
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F.Tama and Y.H.Sanejouand

Table III. Overlap of the mode the most involved in the conformational
change of proteins of various sizes and motion types, when the ‘open’ or
‘closed’ conformations are considered

Protein Overlap

Open Closed

Citrate synthase 0.83 0.57
Calmodulin 0.50 0.37
Che Y protein 0.32 0.34
Dihydrofolate reductase 0.72 0.64
Diphtheria toxin 0.58 0.37
Enolase 0.33 0.30
LAO binding protein 0.84 0.40
Triglyceride lipase 0.30 0.17
Maltodextrin binding protein 0.86 0.77
Thymidylate synthase 0.56 0.40

Figure 2. Comparison of the conformational change of the LAO binding
protein with the normal mode the most involved. Cα displacements as a
function of the residue number, when the open (2lao) and closed (1lst) is, better defined as far as their shape is concerned (see Figurecrystallographic structures (Oh et al., 1993) are compared (thick line), or

1). Indeed, in Table III it is shown that the normal mode mostwhen the atoms are displaced along the corresponding normal mode
involved in the conformational change, as obtained whendirection (thin line). For the sake of comparison, both kinds of atomic

displacements have been normalized. studying an open conformation of a protein, almost always
yields a better description of the direction of the observed
conformational change than that obtained when studying athe case of five proteins, when the modes are calculated with
closed form, the corresponding overlap being significantlythe model described in the Methods section (see Equation 1
larger in eight cases out of 10. Using standard detailedand Figure 1), or when they are calculated using standard
potentials and models, such a result had already been noteddetailed potentials and models, as done within the frame of a
in the case of citrate synthase, when the normal modes of thisprevious methodological study (Tama et al., 2000).
protein are calculated for the open (Tama et al., 2000) and forThe overlaps obtained with the simplified model are found
the closed (Marques and Sanejouand, 1995) forms, and alsoto be almost equivalent to those obtained with standard
in the case of the open (see Table II) and closed forms ofapproaches. In fact, in the former case, the overlap values are
adenylate kinase. In the latter case, the overlap of the modeeven slightly larger in four among the five cases considered.
most involved in the conformational change is 0.37. HereThe most significant increase is observed in tyrosine phos-
again, this value is found to be close to that obtained with thephatase, for which no mode with a significant overlap was
simplified model used in the present study, that is, 0.38 (F.Tamafound using standard approaches (0.22 is a value that can be
and Y.-H.Sanejouand, unpublished results).obtained when many random vectors of this size are compared;

For the two remaining cases, the Che Y protein and enolase,data not shown). This result may reflect one of the main
their conformational changes happen to be rather localized,advantages of the method proposed by Tirion, namely that no
that is, with a small collectivity value (see Equation 4) and,energy minimization has to be performed prior to the normal
as shown hereafter, it is likely that in such cases NMA cannotmode calculation. Thus, here, the structure studied is the
perform well, at least as far as overlap values are concerned.crystallographic structure itself, whereas with standard
NMA performs better with highly collective motionsapproaches it may lie at a Cα r.m.s. distance of up to 2–3 Å;

for the proteins in Table II, the Cα r.m.s. distance lies within In Table IV, values of κ, the degree of collectivity of atomic
motions (see Equation 4) are given for each conformationala 1.2–1.9 Å range (Tama et al., 2000).

The above results are in line with the hypothesis that, as change studied, as well as the overlap of the mode the most
involved found in the case of the open forms of the studiedfar as the calculation of dynamic properties of proteins with

NMA is concerned, simple potentials and protein models proteins. It appears that for a degree of collectivity larger than
0.18, there is always one normal mode with a large overlapperform as well as detailed semi-empirical models (Tirion,

1996; Bahar et al., 1997; Hinsen, 1998). Hereafter, advantage value with the conformational change (larger than 0.5). This
result makes sense since normal modes of low frequency areis taken of the ease of use of simple models in order to address

other issues in a quantitative manner, namely through the study known to be highly collective motions. In the case of rather
localized motions, that is, when κ is !0.18, the direction ofof a significant number of proteins.
the conformational change is rarely well described with aNMA performs better with open forms
single normal mode. Indeed, in the four cases with κ !0.14,First, a potential such as the one we use (see Equation 1) is a
no mode is found with an overlap with the conformationaldescription of a protein as a set of harmonic springs linked
change "0.33. Such results suggest that only highly collectivetogether, as illustrated in Figure 1 in the case of the lysine–
conformational changes may occur along a direction wellarginine–ornithine (LAO) binding protein. The fact that NMA
described by a single normal mode.performs well using such a description (see Figure 2 and
NMA also performs well with more localized motionsTables II and III) suggests that the property captured by NMA

may for the most part be a property of the shape of the protein However, it appears that important correlation values can be
obtained (see Equation 3), even for motions with a low degreeitself. If this point is correct, NMA should perform better with

‘open’ than with ‘closed’ forms, since in the former the of collectivity, as in the case of triglyceride lipase (see Table
IV). In Figure 3, the experimental conformational change ofdomains of the protein are, by definition, more separated, that

4

Tama and Sanejouand (2001) Prot Eng 14, 1

open conformation

closed

LAO

one more thing about NM…
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Conformational 
exploration with NM

Displace along eigenvectors 
Random linear combinations 
Displace along a chosen mode(s) 
Restrain projection along chosen mode(s) 

Typical applications 
Studying mechanisms 
Flexible docking 

Crystal structure refinement 
Cryo EM 
…
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see Perahia, Hinson, Sanejouand, Delarue, Zacharias, Chacon, Grudinin …
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Global optimization

Explicit goal is to find low-energy structures 
Structure prediction 

Implicit goals: 
Exploration 

explore far reaches of conformational space 

Exploitation 

find low-energy structures

"36
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Global minimization/exploration with Basin Hopping

aka “Monte Carlo minimization”, Li and Scheraga PNAS 1987 

Monte Carlo move followed by minimization before Metropolis test 

BH transforms EL to remove all barriers 
If unchecked even samples chirality changes 
→ Ensemble sampling of transformed surface 

Efficient for finding global minimum in somewhat large systems (100 - 1000 atoms)

"37

1

2

3?
∆Vtest
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Frustrated folding of a model protein
BLN coarse-grained model 

HydrophoBic, hydrophiLic, Neutral 

Honeycutt & Thirumalai PNAS (1990) 

Head-Gordon PNAS (2003) 

Highly frustrated EL 

Numerous low-energy structures in deep 
funnels  

Extensive BH studies (~106 minima)

"38
Oakley, Wales & Johnston J Phys Chem (2011)

BLN69 global minimum: 
a ß-barrel
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BH + Voronoi bias: 
hybrid explorer

Combine two strategies 
1) T-RRT: Voronoï bias (taboo-ish) 

Temperature controlled Rapidly-expanding 
Random Tree 
Jaillet, et al. (2011) J Comp Chem 

2) Monte Carlo minimization (Basin Hopping) 
Li & Scheraga (1987) PNAS 

→ Basin hopping threads biased towards 
unexplored regions
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+

Basin Hopping 

T-RRT

courtesy J. Cortés

Cazals et al. (2015) J Comp Chem 
Roth et al. (2016) J Comp Chem



CH Robert	 Algorithms in Structural Bioinformatics 2019	 CIRM, Marseille

Hybrid explorer efficiently finds low-energy 
structures

Model system 
BLN coarse grained protein model (69 
amino acids) 

Global minimum known 

Gold standard database of minimum-
energy structures (Oakley, et al. 2011) 

Hybrid explorer 
More low-energy minima 

Wider exploration 

Competitive run time 
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More basin- 
hopping-like

More T-RRT-
like

Cazals et al (2015) J Comp Chem; Roth et al (2016) J Comp Chem

Number of new 
low-energy 

minima found

Synergy: 
exploration 

and 

exploitation

…in the SBL
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 Global minimization algorithms: 
pluses and minuses

Advantages: 
target low-energy structures (structure prediction) 

broad exploration 

Disadvantages: 
no thermodynamic ensemble: averages not related to observables 

In Basin Hopping, MC move sets limiting for compact states

"41
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Thermodynamic sampling of the EL
MC or MD allows sampling in a thermodynamic ensemble 

Averaging samples allows calculating observable properties 

n(E): density of states (energy states) 
A property of the entire energy landscape 

Grows rapidly with E 

Boltzmann factor: 
Diminishes rapidly with E 

Probability distribution: 

Peaks at average energy at T

"42

WB(E) = exp��E(X)

Pcan(E;T ) / n(E)exp��E

Berg and Neuhaus (1992) Phys Rev Lett 
Mitsutake, Sugita & Okamoto (2001) Biopolymers
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Canonical sampling
Probability distribution of E(T) is approximately Gaussian around avg E  

But crossing barriers may require sampling high E transition regions…
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( )Y. Sugita, Y. OkamotorChemical Physics Letters 314 1999 141–151148

Fig. 3. The canonical probability distributions of the total potential energy of Met-enkephalin obtained from the replica-exchange MD
Ž .simulation at the eight temperatures a and comparison of canonical probability distributions obtained from the replica-exchange MD

Ž . Ž . Ž . Ž .simulation solid curves and the conventional canonical MD simulations crosses at three temperatures b . The distributions in a
Ž . Ž .correspond to the following temperatures from left to right : 200, 239, 286, 342, 409, 489, 585, and 700 K. Pairs of distributions in b
Ž .correspond to the following temperatures from left to right : 200, 239, and 700 K.

Ž .All these results give enough evidence that the above at least first two criteria are met and that the present
replica-exchange simulation indeed performed properly and effectively.
We further compare the results of the replica-exchange simulation with those of a single canonical MD

Ž .simulation of 1 ns at the corresponding temperatures. In Fig. 4 we compare the distributions of a pair of
Ž . Ž .dihedral angles f ,c of Gly-2 at two extreme temperatures Ts 200 and 700 K . While the results at Ts 200

K from the regular canonical simulation are localized with only one dominant peak, those from the
Ž .replica-exchange simulation have several peaks compare Fig. 4a and Fig. 4b . Hence, the replica-exchange run

samples much broader configuration space than the conventional canonical run at low temperatures. Note that
the sets of peaks observed in the distribution from the replica-exchange simulation include those from the
canonical simulation as a subset. However, the latter peak is not the highest one in the former, suggesting that
the canonical run did not end up in the ground state but got trapped in one of other energy-local-minimum
states. The average potential energy at 200 K of the conformation corresponding to the highest peak in

Ž .distributions for the canonical run Fig. 4a is by about 2 kcalrmol higher than that for the replica-exchange
Ž . Ž . Ž .simulation Fig. 4b y 141 versus ca. y 143 kcalrmol . The results at Ts 700 K Fig. 4c,d , on the other

hand, are similar, implying that a regular canonical simulation can give accurate thermodynamic quantities at
high temperatures.
Incidentally, the fact that the distribution obtained from the replica-exchange simulation has several peaks

even at low temperatures gives a partial support that the third criterion above for the optimal performance of
replica-exchange simulations is met. Namely, the highest temperature is sufficiently high so that wide
conformational space is sampled and the distribution is not forced to converge to a single conformation even at

Žlow temperatures, where regular canonical simulations fall in a single energy-local-minimum state. We should

ln Pcan = a − b(E − Ē(T ))2

Potential energy E

ln P(E)
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Trapping in 
canonical 

simulations

"44

-2 -1 1 2

10
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50

A B
•Transition regions are 

exponentially suppressed 

•Simulation remains trapped in 
local (super-) basin

X

Here the true Pcan(T) is bimodal 
Sampled Psim(T) is not: poor sampling 
Large swaths of the energy landscape may be ignored 

→ Other approaches (e.g., REMD) sample better […]
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Summary
1. New and old methods* for 
exploring the EL of macromolecular 
systems both locally and globally 

2. Ways to accommodate and 
compare** diverse data in simplified 
but still rich representations 

* including robotics [Juan Cortés] 
** …also in the SBL [Frédéric Cazals]

"45

V(R)

Comparing 2 EL using the earthmover’s distance 
(Cazals et al. 2015)
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...you're done, stop talking


