

Connections between robotics and molecular modeling

ECHORD++ DualArmWorker Experiment, LAAS-CNRS, Tecnalia, Airbus, Nov. 2017

Loop sampling

• Path sampling on energy landscapes

NOT COVERED

AAS

- Conformational transitions in proteins
- Protein-ligand access/exit pathways
- Towards molecular motion design

- Loop sampling
- Path sampling on energy landscapes

NOT COVERED

 $\Delta \Delta S$

- Conformational transitions in proteins
- Protein-ligand access/exit pathways
- Towards molecular motion design

- Loop sampling
- Path sampling on energy landscapes

NOT COVERED

Conformational transitions in proteins
[Al-Bluwi et al., BMC Struct Biol, 2013]

- Loop sampling
- Path sampling on energy landscapes

NOT COVERED

AAS

Juan Cortés

- Conformational transitions in proteins
- Protein-ligand access/exit pathways

[Cortés *et al.*, *PCCP* 2010] [Devaurs *et al.*, *NAR* 2013] Web server : moma.laas.fr

- Loop sampling
- Path sampling on energy landscapes

NOT COVERED

 $\Delta \Delta S$

- Conformational transitions in proteins
- Protein-ligand access/exit pathways
- Towards molecular motion design

[Molloy et al., Int. J. Robotics Research, 2018]

Loop sampling

• Path sampling on energy landscapes

NOT COVERED

AAS

- Conformational transitions in proteins
- Protein-ligand access/exit pathways
- Towards molecular motion design

Robotics-inspired methods to sample conformations and transition paths of flexible biomolecules

Juan Cortés

Modeling molecular chains as articulated mechanism

Denavit-Hartenberg parameters : $\{a_i, \alpha_i, d_i, \theta_i\}$, only d_i , or θ_i is variable

Homogeneous matrix transformation :

 ΔAS

Juan Cortés

$${}^{i-1}T_i = \begin{pmatrix} \cos \theta_i & -\sin \theta_i & 0 & a_{i-1} \\ \sin \theta_i \cos \alpha_{i-1} & \cos \theta_i \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_i \sin \alpha_{i-1} \\ \sin \theta_i \sin \alpha_{i-1} & \cos \theta_i \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_i \cos \alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$${}^0T_n = {}^0T_1{}^1T_2 \dots {}^{n-1}T_n$$

Modeling molecular chains as articulated mechanism

Denavit-Hartenberg parameters for a molecular chain

a) Consecutive bond torsions : link length $(a_{i-1}) = 0$

b) Non-consecutive bond torsions : link length $(a_{i-1}) \neq 0$

Modeling molecular chains as articulated mechanism

Given the relative pose T_{rel} of the *end-effector* with respect to the *base-frame* find the values of the joint variables θ_i

 $T_{rel} = {}^{0}T_{1}(\theta_{1}) {}^{1}T_{2}(\theta_{2}) {}^{2}T_{3}(\theta_{3}) {}^{3}T_{4}(\theta_{4}) {}^{4}T_{5}(\theta_{5}) {}^{5}T_{6}(\theta_{6})$

Efficient closed-form solvers [Renaud, 2000]

Juan Cortés

Monte Carlo move classes

[Denarie et al., Molecules 2018]

Local (fixed-end) backbone perturbation methods

• One particle moves

- Perturb one particle
- IK for two tripeptides
- Similar to ConRot [Dodd et al., 1993]

Flexible fragment moves

- Perturb n consecutive particles
- IK for *n*+1 tripeptides
- Similar to CCL [Canutescu et al., 2003]

Rigid-body block moves ("hinge")

- Perturb *n* particles as a rigid-body
- IK for two tripeptides
- Similar to CRRUBAR [Betancourt, 2005]

AS INRS Juan Cortés

Sampling long loops

How to sample submanifolds?

Several approaches:

- Optimization-based: Coordinate Cyclic Descent (CCD) [Welman, 1993]
 - Application to proteins: [Canutescu et al, Protein Sci., 2003]

• Semi-analytical: Random Loop Generator (RLG) [Cortés et al, 2002]

- Application to proteins: [Cortés et al, J. Comput. Chem., 2004]

Sampling long loops

[Cortés et al., J Comput Chem, 2004]

AAS CNRS Juan Cortés

Machine-learning approach to protein loop sampling

[Barozet et al., in preparation]

Incremental sampling method

At each iteration :

3.

Juan Cortés

- 1. Choose random position *s*
- 2. Iteratively build a feasible loop configuration by sampling tripeptides $T_1 ... T_{s-1}, T_{s+1} ... T_k$
 - Solve for *T_s* via semi-analytical IK

Machine-learning approach to protein loop sampling

[Barozet et al., in preparation]

Tripeptide selection with Reinforcement Learning

Idea: Incorporate prior knowledge from previous attempts (~ online RL)

How: Feature-based organization in tree data structure (e.g. octree)

- Iterative construction (dependency)
 - Scoring function captures downstream results

 $score_{c}^{k} = score_{c}^{k} \times \prod_{m=k+1}^{K} score^{m}$

Machine-learning approach to protein loop sampling

[Barozet et al., in preparation]

Early results:

Comparison of learning method against naïve tripeptide selection

- 4 seconds per computation
- Learning outperforms naïve
- Gain improves with time

[Jusot et al., JCIM 2018]

Joint work with J. Chomilier and D. Stratmann (UPMC, Paris)

Cyclic-pentapeptide

Conformational space (considering only Φ , Ψ) \rightarrow 4-dimension manifold in a 10-dimension space **Can be sampled exhaustively !**

[Jusot et al., JCIM 2018]

Sampling of Φ_1 , Ψ_1 , Φ_5 , Ψ_5 (+ all ω)

AAS CNRS Juan Cortés

AAS CNRS Juan Cortés

Peptide c(RGDkV)

[Jusot et al., JCIM 2018]

Exhaustive search : 839061 conformations founds

min max

150

100

50

-50

-100

-150-

-150100-50 0 50 100150

150-

100-

50-

-50-

-100-

-150

 $0 - \frac{1}{2}$

Juan Cortés

AAS

REMD

-150100-50 0 50 100150

- Loop sampling
- Path sampling on energy landscapes

NOT COVERED

 $\Delta \Delta S$

- Conformational transitions in proteins
- Protein-ligand access/exit pathways
- Towards molecular motion design

[LaValle 98][LaValle and Kuffner 01]

Juan Cortés Robotics-inspired methods to sample conformations and transition paths of flexible biomolecules

CNRS

Examples of cost-space path planning problems In robotics In structural biology admissible tension-range 150 100 • α₁ h_k 50 ψo -50 Thrust • CLD -100 6-D wrench-set -150 100 -150 -100 -50 0 50 1.50 Weight Resultant pulling force

LAAS CNRS Juan Cortés

Robotics-inspired methods to sample conformations and transition paths of flexible biomolecules

AlgoSB School, 2019

Cost-space Path Planning : the T-RRT algorithm

CNRS

AlgoSB School, 2019

T-RRT : Temperature Self-Tuning

[Jaillet et al., T-RO, 2010] [Jaillet et al., J Comput Chem, 2011]

T_{rate} = 0.1 yields good performance in most cases

les AlgoSB School, 2019

Transition-based RRT (T-RRT)

[Jaillet et al., T-RO, 2010] [Jaillet et al., J Comput Chem, 2011]

Very different behavior compared to a basic Monte Carlo method

T-RRT

Transition-based RRT (T-RRT)

[Jaillet et al., T-RO, 2010] [Jaillet et al., J Comput Chem, 2011]

An interesting property : tends to find "*minimal work*" paths
... but <u>no guarantees</u>

T-RRT

Optimal path : Minimum of W(P)

$$W(P) = \int_{s_{+}} \frac{\partial c_{+}}{\partial s} ds + \varepsilon \int_{s} ds$$

Optimal Path Planning : the RRT* algorithm

[Karaman and Frazzoli, RSS, 2010]

"Re-wiring" process

the edge created is the one minimizing the cost from q_{init} to q_{new} among the <u>neighbors</u> of q_{new}

- Asymptotic convergence to the global optimum
- Basically conceived to minimize and additive cost along the path (e.g. length)

courtesy: Sertac Karaman

CNRS

Optimal Path Planning in Continuous Cost-Spaces

[Devaurs et al., IEEE TASE, 2016]

Idea: combine the beneficial concepts underlying RRT* and T-RRT

- cost-based node creation (configuration cost)
- quality-based edge management (path quality)
- Two new algorithms
 - Transition-based RRT* (T-RRT*)
 - Anytime T-RRT (AT-RRT)
- Theoretical guarantees
 - probabilistic completeness
 - asymptotic optimality

Juan Cortés

Optimal Path Planning in Continuous Cost-Spaces

[Devaurs *et al.*, IEEE TASE, 2016]

AAS

Juan Cortés

An Example of Application in Structural Biology: Modeling Peptide Conformational Transitions

[Jaillet et al., J Comput Chem, 2011]

<u>Alanine dipeptide</u>

Juan Cortés

Energy function:

- parm96 AMBER force field
- implicit solvent (GB)

Energy minima:

	PII	α_{R}	α_{L}	C ₇ ax	αρ	C ₅
ϕ	-67	-63	47	50	-148	-146
ψ	144	-44	51	-138	-70	162
E	0.3	1.1	4.4	4.2	1.7	0.0

Main transition states:

	<i>S</i> ₁	S ₂	S ₃	S ₄	S ₅	S ₆	
φ	0	3	72	74	-111	-142	
ψ	95	-90	137	-8	10	-118	
E	7.3	7.7	7.3	7.7	3.4	2.6	

An Example of Application in Structural Biology: Modeling Peptide Conformational Transitions

[Jaillet et al., J Comput Chem, 2011]

• Alanine dipeptide : Example of one run of T-RRT for $C_5 \rightarrow \alpha_L$ CPU time \cong 1 sec. (on a single processor)

AAS CNRS Juan Cortés

Juan Cortés Rob

AAS

AAS CNRS Juan Cortés

The Ordering-and-Pathfinding Problem

«Off-road» TSP

- Paths (and costs) between pairs of states are unknown a priori
- A continuous cost-space has to be explored

Two-level problem:

- Low-level (cost-based path planning): Connect pairs of states
- High-level (ordering / classical TSP): Find the optimal order to visit all states

Can be interleaved and solved in an anytime manner

The Ordering-and-Pathfinding Problem: Solved with the Anytime Multi-T-RRT Algorithm

[Devaurs et al., IEEE IROS, 2014]

T-RRTs construction

- Build *n* trees rooted at the given states
- Until all trees are connected

Useful cycle addition

- Incremental local improvements
- Guarantees asymptotic convergence to the global optimum

CNRS Juan Cortés Robotics-inspired meth

AlgoSB School, 2019

A more interesting peptide: Met-enkephalin [Devaurs et al., IEEE TNB, 2015]

120 -120 -60 Ď 130 -120 60 150 10 AE (scal/mol) Ψ_{2} Ψ . -100-13 Φ_{γ} Φ. Φ.

Robotics-inspired methods to sample conformations and transition paths of flexible biomolecules

Juan Cortés

CNRS

AlgoSB School, 2019

A more interesting peptide: Met-enkephalin [Devaurs *et al.*, IEEE TNB, 2015] Finding paths between minima : Multi-T-RRT (100 runs) First solution CPU time = ~ 2 min./run Cycle addition (refinement) CPU time = 10 min./run

• Cycle addition (refinement) CPU time = 10 min./run

Symbol	Conformation	4-sign code	Energy (kcal/mol)	Transition To							
						•		A			
				Trans Prob	Path Cost (MW)						
	3	++	-217.9	-	-	0.64	125.5 ± 34.7	0.63	105.5 ± 25.9	1.0	48.2 ± 8.9
•	P		-216.5	0.64	123.8 ± 34.7	-	2	1.0	55.3 ± 18.3	0.86	93.7 ± 27.0
•	2mg	+-++	-215.9	0.63	103.5 ± 25.9	1.0	55.1 ± 18.3	-	-	0.89	72.6 ± 31.3
	ma	*++*	-212.7	1.0	43.0 ± 8.9	0.86	90.2 ± 27.0	0.89	69.4 ± 31.3	-	-

Hybrid shared/distributed-memory implementation:

Parallelization of RRT-based algorithms

For execution on computer clusters

[Estaña et al., Parallel Comput., 2018]

EOS (CALMIP)

Parallel Multi-TRRT

Question ?

juan.cortes@laas.fr

Robotics-inspired methods to sample conformations and transition paths of flexible biomolecules AlgoSB S

AlgoSB School, 2019