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What is RNA Bioinformatics?

Algorithms on sequences don’t care whether it’s RNA or protein,
so what’s special?

• In contrast to plain sequence analysis we’re interested in
structure

• When taking about structural bioinformatics most people
think protein structure – RNA is different.

• Structure can be described at many levels
Most useful for RNA work is usually the secondary structure



Why look at Structure?

• Basic paradigm of structural biology:
Sequence → Structure → Function

• Understanding structure is a first step toward function

• Function is what we’re ultimately interested in
Sequences is what we have in plenty

• Structure should be conserved more strongly than sequence

Structure based methods can succeed where sequence analysis fails
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Structural Bioinformatics of RNA vs. Proteins

• Amino acid sequences are often better for homology search
Larger alphabet and redundancy of the genetic code makes protein
alignment easier than nucleic acid alignment.

• Structural work on proteins often focuses on tertiary structures

• Many more protein than RNA tertiary structures are known

• Protein secondary structures are boring compared to RNA
they only tell which parts of a molecule are in helices/beta-sheets
RNA secondary structure contains interactions (base pairs)

• RNA secondary structures are computationally ease to handle

• Many biological functions can be understood purely on the 2D level



Many non-coding RNAs are Structural RNAs

(a) Group I intron
(b) Hammerhead ribozyme
(c) HDV ribozyme
(d) Yeast tRNAphe

(e) L1 domain of 23S rRNA

Hermann & Patel, JMB 294, 1999

All the “classical” ncRNAs depend on well-defined and
evolutionary conserved structure



Example 1: snoRNAs

Small nucleolar RNAs are trans-acting ncRNAs

• SnoRNAs guide chemical modifications of rRNAs, snRNAs,
and some mRNAs.

• Characteristic secondary structure and sequence motifs

• Two tasks: How to recognize a snoRNA from its sequence?
How to predict the targets of a given snoRNA?
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Example 2: The Flavin Mononucleotide Riboswitch

Example for a cis-acting RNA element
The FMN-binding riboswitch in the free and bound state

• How can we find novel riboswitches?

• Can we predict how a novel riboswitch works?
Up-, or down-regulation; transcriptional or translational control?



Basic Tasks

Mostly the same questions are the same as in sequence analysis
Here we want to base them on structure

• Structure prediction (sequence → structure)
(single or multiple sequences, w/o pseudo-knots, tertiary structure)

• Classification:
• Recognizing new members of a known RNA class (tRNAs,

snoRNAs, . . .)
• Homology searches — Given a novel RNA find all the homologs

where in Evolution did it first occur?

• De novo prediction
Annotate all functional RNAs in genomes or transcriptomes

• Many specialized problems for particular RNA classes
e.g. micro RNA target prediction



The RNA Molecule

Double helices formed by Watson-Crick AU, UA, GC, CG, GU, UG pairs.
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Isostericity of Watson-Crick Pairs



Double Helices

A-form B-form Z-form



The RNA Folding Problem

• Hierarchical folding: Secondary structure forms first then helices
arrange to form tertiary structure

• Secondary structures cover most most of the folding energy

• Convenient and biologically useful description

• Computationally easy to handle

• Tertiary structure prediction needs knowledge of secondary structure



RNA Secondary Structures
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A secondary structure is a list of base pairs (i , j) on a sequence x , with

• Any nucleotide (sequence position) can form at most one pair

• No pseudo-knots: No pairs (i , j) and (k, l) with i < k < j < l

• If (i , j) is a pair then xixj ∈ {GC,CG,AU,UA,GU,UG}
• If (i , j) is a base pair, then j − i > 3



Pseudo knots

Excluding pseudo knots makes life easy, because

• It greatly simplifies the mathematical model
=⇒ Simpler algorithms without pseudo knots

• Many pk-structures are sterically not feasible

• Energetics unknown, except for a few data on
H-type pseudo-knots

On the other hand

• Pseudo knots can have important function

• First step toward tertiary structure

• H-type knots are tractable with extra
computational effort
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Representation of Secondary Structures
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RNA Secondary Structure as Trees
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Representing Ensembles of Structures
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modynamic equilibrium) are
best represented by base pair
probabilities.
A pair (i , j) with probability p is
represented by a square in row
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Loop Decomposition

Secondary structures can be uniquely decomposed into loops.
Loops are the faces of the secondary structure graph.
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Nearest Neighbor Energies

Free energy of a structure approximated as the sum of loop
energies

• Good approximation for most
oligo-nucleotides

• Loop energies depend on loop type and size,
with some sequence dependence

• Most relevant parameters measured
experimentally, some still guesswork

• Free energies are dependent on temperature
and ionic conditions

• Training parameters is becoming an
alternative to experiment
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Stacked Pairs

• Major source of stabilizing energy

• all 21 combinations measured, accuracy at least
0.1 kcal/mol

• include the hydrogen bonding energy of pair formation

• energies of tandem G·U pairs depend on context, i.e.
violate the nearest-neighbor model

G
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U

C

−2.4
kcal/mol

(i + 1, j − 1)
CG GC GU UG AU UA

(i , j) CG -2.4 -3.3 -2.1 -1.4 -2.1 -2.1
GC -3.3 -3.4 -2.5 -1.5 -2.2 -2.4
GU -2.1 -2.5 1.3 -0.5 -1.4 -1.3
UG -1.4 -1.5 -0.5 0.3 -0.6 -1.0
AU -2.1 -2.2 -1.4 -0.6 -1.1 -0.9
UA -2.1 -2.4 -1.3 -1.0 -0.9 -1.3

For comparison: Thermal energy RT ≈ 0.6kcal/mol at 37C.



Determining Nearest Neighbor Parameters

UV absorption can distinguish between double and single stranded
nucleic Acids — Hyperchromicity



Determining Nearest Neighbor Parameters

UV absorption (at 260nm) can be used to follow the unfolding
transition as a function of temperature.



Analyzing UV Melting Curves

Assume a 2-state model

funfolded(T ) =
A(T )− A(Tmin)

A(Tmax)− A(Tmin)

Keq =
funfolded
ffolded

= e−∆G/RT



Van’t Hoff Analysis

lnKeq = −∆G

RT
= −∆H

RT
+

∆S

R



Algorithms for Secondary Structure Prediction

RNA structures can be predicted by Dynamic programming
algorithms in many variants.

• Minimum free energy structure (Zuker & Stiegler ’81)

• Optimal and certain suboptimal structures (Zuker ’89)

• All structures within an energy range (Wuchty et al. ’99)

• Partition function and base pair probabilities (McCaskill ’90 )

• Stochastic suboptimals (Ding & Lawrence ’01)

• Maximum expected accuracy structures (Do et al ’06)

• Consensus structure prediction from alignment
(Knudsen & Hein ’99, Hofacker et al. ’02)

• Minimum free energy with pseudo-knots (Rivas & Eddy ’99)

• Extended secondary structures with non-canonical pairs
(Parisien & Major ’08, Höner et al ’11)



The RNA Conformation Space

The number of secondary structures for a sequence x = x1 . . . xn
can be enumerated recursively:

i jj i i+1 j i i+1 k−1 k k+1
|=

Sij = Si+1,j +

j∑
k=i+m

Si+1,k−1Sk+1,j pair(xk , xj)

pair(xk , xj) = 1 if xkxj is a canonical pair
(GC, CG, AU, UA, GU, UG)
otherwise pair(xk , xj) = 0.
For typical sequences the number of conformations grows as

S1n ∼ n−
3
2 1.85n



Solving the Folding Problem

Toy model for RNA folding: assign energies to base pairs ε(x , y).
Easily solved by Dynamic Programming, i.e.:
Recursive computation with tabulation intermediate results.

i jj i i+1 j i i+1 k−1 k k+1
|=

Eij = min
i<k≤j

{
Ei+1,j ;

(
Ei+1,k−1 + Ek+1,j + ε(xi , xk)

)}
• E1n is the best possible energy for our sequence x .

• Backtracing through the E table yields the corresponding structure.

• The Algorithm requires O(n2) memory and O(n3) CPU time.

In practice this toy model is not good enough!
For serious predictions, we need to use loop dependent energies.



Folding using Nussinov’s Algorithm
ε(C ,G ) = ε(G ,C ) = −3 ε(A,U) = ε(U,A) = −2
ε(G ,U) = ε(U,G ) = −1

Eij = Ei+1,j | Ei+1,k−1 + Ek+1,j + ε(xi , xk)
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Folding with Loop based Energies
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Fij free energy of the optimal substructure on the subsequence x [i ..j ].

Cij optimal free energy on x [i ..j ], where (i , j) pair.

Mij x [i ..j ] is part of a multiloop and contains at least one pair.

M1
ij same as Mij but contains exactly one component closed by (i , h).



Minimum Free Energy Folding and Accuracy

MFE folding predicts, the optimal, most probable, structure.

+ easy to program, calculate, and interpret

− one structure to represent the equilibrium ensemble

− no indication of reliability

Accuracy measured by comparison with (phylogenetic) model
structures.

• about 40-70% accuracy with current parameters

• accuracy decreases with sequence length

• accurate structures can usually be found within small energy
increment of the MFE

Both inaccurate parameters and approximations of the energy
model to blame for poor predictions.
Whenever possible don’t rely on a single structure!



Limits to prediction accuracy

A number of different factors contribute to the inaccuracy of our
predictions:

• Beyond secondary structure:
Pseudo-knots, non-canonical pairs, 3D structure

• Deviation from “standard” conditions
Ion concentrations (esp. Mg2+), temperature

• Interaction with other molecules:
RNA interact with proteins other RNAs and metabolites

• Folding kinetics:
native structure 6= ground state structure



Representing Ensembles of Structures
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Partition Function, Botzmann probabilities and Pair
Probabilities

The partition function Z is the fundamental quantity of statistical
mechanics. All thermodynamic properties can be derived from it.

• Partition function Z =
∑

s exp
(
−E(s)
RT

)
• Boltzmann pobability of a structure s: p(s) = 1

Z exp
(
−E(s)
RT

)
• Expected value of any quantity A: 〈A〉 =

∑
s A(s)p(s)

• Free energy F = −RT lnZ

• Entropy S = − ∂F
∂T
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s exp
(
−E(s)
RT

)
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Constrained Parition Functions

Probability of some feature A. Compute the constraint partition
function

ZA =
∑

s has feature A

exp

(
−E (s)

RT

)
, p(A) =

ZA

Z

• Probability of forming the pair (i , j)

• probability of forming an aptamer structure

• probability of presenting a binding site

• . . .



Computing Partition Function and Pair Probabilities

For simplicity back to the Nussinov model:
Computing the partition function Z =

∑
Ψ exp(−E (Ψ)/RT ) is

simple:

Zij = Zi+1,j +
∑

k, (i ,k) pairs

Zi+1,k−1Zk+1,j exp(−εik/RT ) .

In conjunction with the partition function Ẑij for structures outside
the subsequence x [i ..j ] we can compute pair probabilities:

pij = ẐijZi+1,j−1 exp(−εij/RT )/Z .



Pair Probabilities

Equilibrium probabilities for all possible pairs can be calculated via
McCaskill’s partition function algorithm:
• provides a rigorous description of

structures in thermodynamic
equilibrium

• probability dot plots contain entropic
terms not included in energy dot plots

• starting point for measures of
reliability and well-definedness

− not as easy to interpret as a small set
of structures
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Well-defined Regions

Pair probailities can help judge the reliability of a prediction.

Well-definedness: Are there many structural alternaives?

e.g. “ensemble diversity” (returned by RNAfold) measures
dissimilarity of structural alternatives
Computed directly from pair probabilities 〈d〉 =

∑
i,j pij · (1− pij)

Local reliability: Which which parts the prediction we can trust?

High probability pairs are almost always correct.
Secondary structure plots can be colored by pair probability or
“positional entropy” to highlight reliable and unreliable regions.
positional entropy is computed from pair probabilities as S(k) = −

∑
i pik ln pik



Structures with reliability annotation
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Alternatives to the MFE as “best” Structure

Maximum Expected Accuracy (MEA)

• Select the structure expected to have the most base pairs correct

• → Maximize the sum of pair probabilities < A >=
∑

(i,j)∈S pij
• Computed by “Nussinov”-like dynamic programming

Centroid Structure
• Choose the structure that is “nearest” to all other struture in the

the Boltzman ensemble

• Minimize < d(S) >=
∑

(i,j)∈S pij +
∑

(i,j)/∈S(1− pij)

• Trivial solution: just pick all pairs with probability > 0.5

No free lunch: Centroid and MEA structure may correspond to a
very unlikely structure!



Suboptimal Structures

Zuker’s p-suboptimal structures (mfold)

For each pair (i , j) generate the best structure containing that pair.

+ easy to compute by multiple backtracking

+ present a user user with few, representative alternatives

− important alternatives can be missed

− somewhat arbitrary selection of representatives

Complete suboptimal folding

generates all structures within given energy range from the mfe.

+ Calculate any thermodynamic average

+ Investigate the energy landscapes, e.g. find low-lying local minima

− huge amount of data, only for moderately short sequences

Stochastic suboptimal structure

generate Boltzmann weighted sample through stochastic backtracking



Dot Plots and Suboptimal Structures

Zuker suboptimal structures may miss important alternatives

GUCCGCAGUUGCGGACUGCCCGUAAUUGCGGGCGUUCGUGUAUGCGAACGGCUCGUGUAUGCGAGC

((((((....)))))).((((((....))))))((((((....)))))).((((((....))))))

((((((((((((((.....))))))))))))))((((((....)))))).((((((....))))))

((((((((((((((.....)))))))))))))).(((((((((((((.....))))))))))))).

((((((....)))))).((((((....)))))).(((((((((((((.....))))))))))))).

Only the first 3 structures are found by mfold
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Variations on Backtracing

What we need:
• Let π be a partial structure consisting of

• Ωπ a set of already known base pairs
• Υπ a list of sequence intervals with unknown structure

• E (π) best energy that can be obtained by completing π

• S a stack of partial structures to be processed



Variations on Backtracing

MFE backtracing:

∅→ S.
while S 6= ∅ do
π ← S;
if π is complete then output π
[i , j ] = I ∈ Υπ.
π′ = πJ(i)
if E (π′) = Eopt

then π′ → S; next;
for all k ∈ [i , j ] do
π′ = πJ(i , k)
if E (π′) = Eopt

then π′ → S; next;



Variations on Backtracing

Wuchty suboptimals

∅→ S.
while S 6= ∅ do
π ← S;
if π is complete then output π
[i , j ] = I ∈ Υπ

π′ = πJ(i)
if E (π′) ≤ Eopt + ∆E

then π′ → S;
for all k ∈ [i , j ] do
π′ = πJ(i , k)
if E (π′) ≤ Eopt + ∆E

then π′ → S;



Variations on Backtracing

Stochastic backtracing

∅→ S.
while S 6= ∅ do
π ← S;
if π is complete then output π
[i , j ] = I ∈ Υπ

r = Z (π) · rand();
π′ = πJ(i); r = r − Z (π′)
if r ≤ 0 then π′ → S; next;
for all k ∈ [i , j ] do
π′ = πJ(i , k); r = r − Z (π′)
if r ≤ 0 then π′ → S; next;



SCFG based Methods

Stochastic Context Free Grammars

• An extension to HMMs that can handle long range
correlations

• Formally, a CFG is a tuple G = (V , α, S ,R) of
Alphabet α, nonterminals V , Start symbol S , and rewrite
rules R

• Stochastic CFG adds probabilities to each rule

• Generates sequences using a series of rewriting rules

• Well known repertoire of algorithms that work on any SCFG



Nussinov Algorithm as SCFG

i jj i i+1 j i i+1 k−1 k k+1
|=

S → aS |cS |gS |uS
S → PS

S → ∅
P → aSu|uSa|cSg |gSc |gSu|uSg

• Applying grammar rules produces an RNA sequence

• The parse tree of productions used corresponds to the structure

• A stochastic CFG assigns probabilities to each production rule

• CYK algorithm finds the parse tree (structure) most likely to
produce the given sequence



SCFGs vs Energy directed folding

Many RNA related algorithms come in two flavors, based on either

energy directed folding or stochastic context free grammars

physics based model
parameters from experiment

probabilistic inference
parameters learned from data

Algorithms are mostly analogous, but terminology is different!

MFE folding
pair probabilities

CYK algorithm
Inside/Outside algorithm



Beyond classical secondary structure

State of the art in RNA secondary structure prediction:

• Classical secondary structure considers only 6 types of pairs
CG,GC,AU,UA,GU,UG

• All base pairs are assumed to be Watson-Crick type

• Loops are drawn as unstructured bubbles

• Energy model assigns free energies to each loop

Can we improve the level of detail?



Leontis-Westhof classification

Watson-Crick base pairing is only part of the story!

Overall 12 different pairing types for any two bases
Starting point for defining recurring tertiary structure motifs



2D and 3D Structures
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Looking at known tertiary structures
we find that:

• “Loops” are not unstructured

• full of non-canonical base pairs

• all 16 [ACGU]×[ACGU]
combinations form pairs

• the same two nucleotides can
pair in many different ways
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